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Leucine retention by the clay-sized mineral fraction. 
An indicator of C storage
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The chemical interactions between soil clay-sized mineral fractions and soluble organic compounds 
are mainly the result of soil sorption mechanisms into reactive sites. The ability of clay-size fractions 
from different Chilean soil groups to protect leucine from microbial decay was used as an index of 
the retention of soluble organic matter by soil mineral fractions. The reactivity of clay-sized mineral 
fractions was determined by extractable Al in ammonium acetate 1M, pH 4.8; acid ammonium 
oxalate 0.2 M; sodium pyrophosphate 0.1 M and pH levels in NaF. Leucine retention provided by 
the clay-sized mineral fraction was estimated by determining the amount of leucine remaining after 
a 24 h period of incubation post-application of leucine to soil mineral fractions under controlled 
conditions. The slope of non-linear regression (ratio between added versus recovered) reflects 
the different chemical protection capacities of the materials evaluated, where b values were 0.001, 
0.021, 0.043, 0.124, 0.128 and 0.259 for quartz sand, smectite, kaolinite, halloysite, volcanic-glass 
and allophane, respectively. We found that the leucine retention index was related to the clay-sized 
reactive fraction for all the soil groups evaluated (R2 > 0.75). Thus, within the range used (up to 1480 
mg kg-1 of leucine applied), the recovery was related to the amount of aluminium extracted with 
ammonium acetate 1M (R2 = 0.96). Clay-sized mineral fractions with greater reactivity, due to their 
dominant colloid fraction (clay-sized mineral fractions plus residual SOC), expressed bigger leucine 
protection to microbial decay.
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RESUMEN

Las interacciones químicas entre las fracciones minerales del tamaño de arcilla del suelo y los compuestos orgánicos solubles 
son principalmente el resultado de los mecanismos de adsorción en los sitios reactivos del suelo. La capacidad de las fracciones 
de tamaño de arcilla de los diferentes grupos de suelos chilenos para proteger la leucina de la descomposición microbiana fue 
utilizada como un índice de retención de la materia orgánica soluble por las fracciones minerales del suelo. La reactividad de 
las fracciones minerales de tamaño de arcilla se determinó mediante el Al extractable en acetato de amonio 1M, pH 4,8; en 
oxalato ácido de amonio 0,2 M; en pirofosfato de sodio 0,1 M y los niveles de pH NaF. La retención de leucina que proporciona 
la fracción mineral del tamaño de arcilla se estimó determinando la cantidad de leucina que quedaba después de un período 
de incubación de 24 horas tras la aplicación de leucina a las fracciones minerales del suelo en condiciones controladas. La 
pendiente de la regresión no lineal (relación entre la adición y la recuperación) refleja las diferentes capacidades de protección 
química de los materiales evaluados, donde los valores b fueron de 0,001, 0,021, 0,043, 0,124, 0,128 y 0,259 para arena de 
cuarzo, esmectita, caolinita, halloysita, vidrio volcánico y alofán, respectivamente. Encontramos que el índice de retención 
de leucina estaba relacionado con la fracción reactiva del tamaño de arcilla para todos los grupos de suelos evaluados  
(R2 > 0,75). Así, dentro del rango utilizado (hasta 1480 mg kg-1 de leucina aplicada), la recuperación estaba relacionada con 
la cantidad de aluminio extractado con acetato de amonio 1M (R2 = 0,96). Las fracciones minerales del tamaño de arcilla con 
mayor reactividad, debido a su fracción coloidal dominante (fracciones minerales del tamaño de arcilla más carbono orgánico 
residual del suelo), expresaron una mayor protección de la leucina frente a la descomposición microbiana.
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INTRODUCTION

Soil organic carbon (SOC) is an extremely valua-
ble natural resource and a key element to soil quality 
(Kirkby et al., 2013). Irrespective of the climate regula-
ted debate, the SOC stock must be restored, enhanced, 
and improved (Lal, 2004). Therefore, it is essential to 
achieve an adequate management of soil organic mat-
ter (SOM) in agroecosystems, for the purposes of ad-
vancing in food security, mitigating climate change and 
improving water quality (Lal, 2017). In general, SOC 
is usually separated into two functional components 
within the soil: non-labile carbon (stabilized) and la-
bile carbon (Blair et al., 2006). Organic carbon (OC) 
stabilisation results from the input of the OC portion 
which becomes resistant to microbial decay and rema-
ins in the soil over time (Sollins et al., 1996; Schmidt et 
al., 2011). Organic-mineral interactions are the most 
important mechanisms to establish the long-term 
carbon (C) stabilisation of soils (Dippold et al., 2014; 
Dignac et al., 2017). The chemical interactions that oc-
cur between organic compounds and the soil matrix 
mainly result from sorption reactions (Wiesmeier et 
al., 2019). Several studies (Zhang et al., 2012; Saidy et 
al., 2013; Gao et al., 2017; Apostel et al., 2017) have 
researched the soil sorption ability to retain different 
organic compounds and its relationship with the phy-
sicochemical parameters that influence the SOC stora-
ge (Rassmussen et al., 2018; Wiesmeier et al., 2019). 
Whatever the precise mechanism of sorption or stabi-
lisation, the reaction between soluble organic matter 
and soil colloids (clays, oxides, oxyhydroxides and the 
same SOM) results in changes of the original degrada-
bility of these compounds by microbial biomass (Kle-
ber et al., 2015). Reactivity of the soil colloidal frac-
tion can be used as an index of the soils capacity to 
accumulate organic matter, assuming this is one of the 
principal mechanisms capable of explaining the diver-
se content of organic matter in soils. 

Soil sorption processes occur in the hydroxyls 
found in clay colloid edges (Oburger et al., 2009; Kle-
ber et al., 2015). The interactions between the oxygen 
borders associated with the silica tetrahedral la-
yer and soluble organic C were shown to be weaker 
than those among hydroxyl groups associated with 
the aluminium octahedron (Kahle et al., 2004; Matus 
et al., 2014). Thus, compounds such as phosphate or 
even organic acids have been shown to be more ad-
sorbed in soils with higher reactive sites (Andisols) 
than in soils with intermediate levels of reactive sites 
(Podzols) and much less so in soils with few reactive 
sites (Inceptisols) (Oburger et al., 2009; Matus et al., 
2014; Vázconez and Pinochet, 2018). Also, Matus et al. 
(2006) reported that Al extractable in acid ammonium 
acetate was the primary factor explaining the soil C 
variation in similar soils rather than the climatic va-

riables and clay content. In addition, Valle et al. (2015) 
confirmed that Al extractable was a better indicator of 
soil reactivity in Andisols than the clay content. There-
fore, when this parameter was related to SOM content 
we could confirm that the extractable aluminium is the 
most important index of the SOM value (Clunes et al., 
2014; Rasmussen et al., 2018). Soil adsorption sites 
mainly depend on the clay mineralogical composition 
(Lal, 2017; Wiesmeier et al., 2019). The ligand adsorp-
tion capacity of OC compounds in clays are related to 
the clay ability to form these bonds, being smaller in 
kaolinite and greater in clay 2:1 type smectite and ver-
miculite (Zhang et al., 2012; Kleber et al., 2015). Mo-
reover, in short range-order aluminosilicate clays as 
an allophane and imogolite, the ability to form bonds 
with different OC compounds and to protect these 
compounds from degradation can be greater (Matus et 
al., 2014; Wiesmeir et al., 2019).  

Soluble OC compounds such as amino acids (ala-
nine, leucine, etc.) are usually easily degraded by soil 
microbial biomass (Oburger et al., 2009; Apostel et al., 
2017). However, there is certain protection which can 
be provided by an interaction of organic compounds 
with clays (Lützow et al., 2006; Nowak et al., 2011) 
for a short time in soil solutions before microorga-
nisms quickly use them to grow (Kemmitt et al., 2008), 
allowing these compounds to remain within the soil 
system (Dippold et al., 2014). This research proposes 
that the protection provided by soil colloids fraction of 
a neutral amino acid with a carboxyl group in its struc-
ture (Gao et al., 2017) and quickly absorbed by mi-
croorganisms, such as leucine (Reischke et al., 2014), 
would be reflected in the amount of leucine recovered 
after 24 h of incubation. This retention index would 
thus be related to the reactivity of the colloids fraction 
found in each soil. Therefore, this study aimed to com-
pare the colloid material fractions (dominant clay + 
silt fractions plus the residual OC) of main soil groups 
present in Chile, regarding their capacity to chemically 
protect leucine from microbial degradation.

MATERIALS AND METHODS

Characterisation of soils and clay-sized fraction 
materials

In this study, the mineral fraction of the soil was 
represented by the “clay-sized fraction” separated 
through sequential physical and chemical dispersion 
methods. To obtain clay-sized fractions, five great soil 
groups were used: i) Inceptisol (Typic Xerochrepts) 
ii) Alfisol (Ultic Haploxeralfs) iii) Ultisol (Acrudoxic 
Hydric Hapludands) iv) Entisol (Vitrandic Udorthent) 
and v) Andisol (Acrudoxic Hapludand) (CIREN, 1981; 
Pino et al., 2002; CIREN, 2003; Soil Survey Staff, 2010). 
Predominant clay mineralogy in each of the soils men-
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tioned above is smectite, kaolinite, halloysite, volca-
nic-glass and allophane, respectively (Besoain, 1985; 
CIREN, 2003). Disturbed soil samples were collected, 
sieved (< 2 mm), air-dried (25 °C) and characterised by 
their reactivity, determined by measuring their extrac-
table Al content. Al was extracted using ammonium 
acetate 1M, pH 4.8 (soil-solution ratio 1:10; Ala) (Sad-
zawka et al., 2006), acid ammonium oxalate 0.2 M (soil 
solution ratio 1: 50; Alo), and sodium pyrophosphate 
0.1 M (soil solution ratio 1:100; Alp) (Sadzawka, 1990). 
Also, Fe was extracted using acid ammonium oxalate 
0.2 M (soil solution ratio 1: 50), pH in NaF (soil solu-
tion ratio 1:50) was measured (Sadzawka, 1990). 

Physical soil colloid fraction separation 

Soil samples weighing 60 g (dry basis) were diges-
ted with hydrogen peroxide (100 volumes) to elimina-
te organic material (Sadzawka, 2006). The hydrogen 
peroxide was applied daily at 20 °C (room tempera-
ture) and then the samples were placed in a water 
bath (around 80 °C) until the material stopped reac-
ting. The sand was physically separated with a 63 μm 
sieve (Forshythe, 1974). The remaining supernatant 
suspension was dispersed with ultrasonic vibrations 
for five minutes (Schallfix, ultrasound stem, 120.000 
rpm) and silt and clay soil fractions were separated 
by decantation (Mayer et al., 2002). Subsequently, in 
the separated clay-sized material the residual organic 
C contents were measured using Walkley and Black 
methodology by wet digestion (Sadzawka, 1990). 

Incubation of soil colloid fraction with leucine 

One (± 0.01) g (dry basis) of clay-sized fractions 
was incubated for 24 h in the dark at 20 °C with incre-
asing leucine rates of 186, 360, 740, 1120 and 1480 
mg kg-1 soil, which were prepared by adding 0.0093, 
0.018, 0.037, 0.056 and 0.074 g of leucine to a 1 M HCl 
solution. From these solutions, 0.5 mL were applied 
to 1 g of clay material. A control was included using 
quartz sand inert material (as a non-retentive substra-
te) to evaluate leucine recovery in an inert material.

After 24 hours of incubation, the remaining leuci-
ne was extracted; its amount was determined using 
the colourimetric method measured at 570 nm. This 
method is based on the colourimetric determina-
tion when the ninhydrin reaction reaches a pH of 5.0 
(Sparks, 1996). This method was used because the 
screening for adsorption on a < 2 µm fraction of 0–10 
cm depths showed that L-lysine, L-histidine, and L-
arginine were adsorbed by similar amounts while L-
glutamic acid and L-leucine were not adsorbed in the 
pH range of 5.7–7.2 (Bartlett and Doner, 1988). Thus, 
all samples were adjusted to a pH of 5.0 for further tes-
ting. The sample preparation for colourimetric analy-

ses was slightly modified from the original method, 
following the procedure described in Rothamsted’s re-
view (2005). This consisted of taking 1 mL of the sam-
ple solution and mixing it with 2 mL of citric acid and 1 
mL of the combined solution (a mixture of the sodium 
acetate buffer, ninhydrin reagent, distilled water and 
tin chloride).

The amount of leucine recovered from the different 
clay-sized fractions in the soils was fit to a non-linear 
regression between the amount of leucine applied and 
the amount of leucine recovered. The slope obtained 
from this relation represents the leucine retention rate 
(Leucine retention index: LRI).

Furthermore, for the purposes of this research, the 
total amount of the reactive colloidal fraction of the 
soils evaluated was calculated as follows: 

Total colloidal fraction reactivity = Ala + residual 
SOC content

Where, Ala (g 100 g-1) is Al extracted using ammo-
nium acetate 1M, pH 4.8 and residual SOC content (g 
100 g-1) is the organic C content measured in the sepa-
rated clay-sized fraction.

Statistical analysis

The data were analysed using a completely rando-
mized design with three replicates. Non-linear regres-
sions were used (best-fit curve). All of the clay-sized 
fraction material samples, including all of the leucine 
rates, were incubated separately and the amount of 
leucine remaining was determined after incubation 
times. Normality of the residuals of the model was 
checked with the D’Agostino-Pearson normality test. 
The coefficient of determination (R2) was calculated 
as indicators of a good fit. The statistical program Gra-
phPad Prism v.5.0 was used.

RESULTS 

Retention of leucine in clay-sized fractions

The amount of leucine recovered from different 
clay-sized fractions of the soils evaluated was fit to a 
non-linear regression between the amount of leucine 
applied and the amount of leucine recovered (Figure 1).  
Quartz sand was used as a control because it is a non-
reactive material and all of the leucine applied would 
be in the solution and its disappearance would there-
fore be produced by microbial decay during the incu-
bation. Results showed that adding up to 1480 mg kg-1 
of leucine did not produce an increase in the amount of 
leucine found in the solution after the incubation pe-
riod (only 1.9 mg kg-1 was recovered, regardless of the 
amount of leucine applied). 

The slope (b) of the equation reflects the different 
chemical retention capacities of the clay-sized fractions 
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evaluated, where b values were 0.001, 0.021, 0.043, 
0.124, 0.128 and 0.259 for quartz sand, smectite, kao-
linite, halloysite, volcanic-glass and allophane, respec-
tively. Although Inceptisol clay-size fraction (smectite) 
presented the lowest slope value, the leucine retention 
(recovering 31.1 mg kg-1 of leucine) was 16 times hig-
her than the value obtained from the quartz sand (con-
trol). A second level of leucine retention (recovering 
63.2 mg kg-1 of leucine), as shown by the slope, was pre-
sented by the clay fraction from the Alfisol (Figure 2).  
Ultisol showed the third level of leucine retention, re-
covering 183.5 mg kg-1 of leucine. The fourth level of 
leucine retention (recovering 188.9 mg kg-1 of leucine) 
was shown by the clay-sized fraction in the Entisol. Fi-
nally, the material with the highest leucine retention 
(recovering 383.3 mg kg-1 of leucine) was found in the 
clay-sized fraction in the Andisol (Figure 1). These 
results allowed to propose a leucine retention index 
(LRI) using the variation on the slope of the regression 
between recovered leucine and applied leucine.

Mineral reactivity of clay-sized fractions

The soil clay-sized fractions ability to retain ions 
and organic compounds in solution was assessed using 
different chemical indicators mainly associated with 
extractable Al to represent the mineral reactivity of 
each soil type (Figure 2). The reactivity shown by the 
extracted Al contents was correlated positively to the 
pH NaF, because the different soils with different mi-
neralogy evaluated in this study were able to generate 
very distinct amounts of reactive OH (Figure 2).

Figure 1.	Relationship between applied and recovered leucine rates for each clay-sized mineral fraction of soils versus quartz 
sand. All regressions present statistical differences (p <0.0001) for each treatment (n = 18).
Figura 1.	Relación entre la leucina aplicada y la taza recuperada de leucina para cada fracción mineral de tamaño de arcillas de 
los suelos versus arena de cuarzo. Todas las regresiones fueron diferentes estadísticamente (p <0,0001), para cada tratamiento 
(n = 18).
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The clay-sized fraction from Andisol and Entisol 
showed high reactivity, subsequently, the Ultisol, In-
ceptisol and finally Alfisol proved to be derived from 
less reactive materials. Al extracted by acid oxalate 
(Alo) from the Andisol was 4-folds more than the Ul-
tisol, 6-folds that of the Entisol and much higher than 
that obtained from the smectite clay soil (Colina, 22 
times lower) or the kaolinitic Alfisol (29 times lower). 
Al extracted by pyrophosphate (Alp) also showed a si-
milar trend, where the reactive Al of the Andisol was 
3 times the value obtained by the Entisol and the Ulti-
sol, subsequently the Alfisol (79 times) and Inceptisol 
(215 times). The Al extracted by ammonium acetate 
(Ala), Andisol had the highest reactivity, followed by 
Ultisol (5 times less) and Entisol (9 times), with In-
ceptisol (951 times) and Alfisol (1260 times) showing 
much lower levels of extractable Al (Figure 2). The Fe 
extracted by acid oxalate from the Andisol was 1-fold 
more than the Ultisol, 3-folds that of the Entisol and 
about 5-folds the value for Inceptisol and Alfisol (data 
not shown).

Leucine retention index (LRI) and reactivity 
parameters of clay-size fractions of soils

To evaluate this relationship in all of the studied cases, 
a non-linear regression was adjusted. LRI was better 
related to reactive Ala (determined in both the soil and 
the clay-size fraction) and with reactive hydroxyls mea-
sured in pH NaF (Figure 3), where the soil series that 
presented the highest LRI was Puyehue. 
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Figure 2.	Relationship between the pH in NaF and Al extracted by sodium pyrophosphate (Alp), acid oxalate (Alo), and 
ammonium acetate (Ala). Blue symbols mean Ala, green symbols mean Alo and orange symbols mean Alp. (n = 3).
Figura 2.	Relación entre pH en NaF y Al extractado en el pirofosfato de sodio (Alp), oxalato ácido (Alo) y acetato de amonio 
(Ala). Los símbolos azules son Ala, símbolos verdes son Alo y símbolos naranjas son Alp. (n = 3).

Figure 3.	Relationship between Clay-sized fractions and parameters that determine the reactivity of leucine retention (leucine 
retention index) measured in soils and slopes. Extracted Ala: Extracted Al ammonium acetate.
Figura 3.	Relación entre las fracciones de tamaño de arcilla y los parámetros que determinan la reactividad medida en los 
suelos y las pendientes de retención de leucina (índice de retención de leucina). Ala: Al extractado en acetato de amonio.
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DISCUSSION

Soil Reactivity Indicators

Several researchers have used similar indicators to 
characterise different types of soils, reactivity and mi-
neralogy, including soils of volcanic origin (Matus et al., 
2008; Oburger et al., 2009; Matus et al., 2014; Valle et 
al., 2015; Rassmussen et al., 2018; Cotrufo et al., 2019). 
The pH in NaF has been used to estimate the hydroxyl 
reactivity of soil colloidal material, in particular its 
specific adsorption (Fieldes and Perrot, 1966; Kleber 
et al., 2005; Oburger et al., 2009). It has been demons-
trated that there is a relationship between the OH re-
activity of clay soils and their ability to specifically ad-
sorb (covalent bonds) phosphates (Gilkes and Hughes, 

1994; Valle et al., 2015), retain and accumulate C stores 
(Kramer and Chadwiks, 2016) and to adsorb boron in 
volcanic-influenced soils (Terraza et al., 2018). For this 
reason, the pH NaF is a reliable indicator of the presen-
ce of allophonic materials and is also used to evaluate 
the degree of short-range minerals in soils (Valle et al., 
2015; Terraza et al., 2018; Enang et al., 2019) because 
clays with high reactivity, such as allophane, produce 
an alkaline reaction with sodium fluoride, releasing 
OH (Egawa et al., 1960; Fieldes and Perrot, 1966). The 
pH values in 1N NaF above 9.4 indicate the presence 
of allophane and organic substance complexes with 
active aluminium (amorphous), as is the case with An-
disols (Gaitan and Lopez, 2007). Results showed that 
clay-size fraction (which represent the mineral part 
of the colloidal fraction in this research) derived from 
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volcanic ash, which was the dominant clay allophane, 
presented pH NaF values greater than 11.0. These re-
sults suggest that leucine retention is produced by the 
ligand exchange between clay materials hydroxyl edges 
and the OH present within the leucine molecule.

The “reactive” Al (Ala, Alo and Alp) of clay-sized mi-
neral fraction of soils is used as an indirect measure-
ment of the reactivity of OH sites in the soil (Matus 
et al., 2014; Valle et al., 2015; Kramer and Chadwick, 
2016; Enang et al., 2019). Since Al presents a coordi-
nation of six, it generates an octahedron structure with 
hydroxyls along its edges (Kleber et al., 2015). Ligand 
exchange can occur on OH borders, retaining anions 
in a specific way in their exchange complex (Oburger 
et al., 2009). There is a positive relationship between 
a stable organic C content and the amount of hydroxyl 
ions released after a reaction with a NaF solution, su-
ggesting that ligand exchange between the protonated 
surface of hydroxyl sites and organic functional groups 
is the main mechanism of C stabilisation in soils (Kle-
ber et al., 2005; Kramer and Chadwick, 2016). In Chile, 
the “reactive” Ala is the most used indicator for soil re-
activity in volcanic soils and to characterize different 
soil mineral materials (Rodríguez, 1993; Matus et al., 
2008; Valle and Carrasco, 2018). In addition, conside-
ring its different extraction methods, it has been used 
as a relevant parameter to determine C storage in soils 
given its positive correlation with SOC (Matus et al., 
2014; Clunes et al., 2014; Valle and Carrasco, 2018).

Retention of leucine in clay-sized fraction 
materials

Soil aggregation influences SOM stabilisation becau-
se it provides accessibility of microorganisms to organic 
compounds (Lal, 2004). Stabilisation is defined as the 
protection of OM from mineralisation (Lützow et al., 
2006). The quartz material was non-reactive (Figure 2) 
and that there was no interaction between the leucine 
amino acid used and the quartz material used (Dipplod 
et al., 2014). The results suggest that leucine decayed 
in all of the soils sampled, regardless of their chemical 
retention capacity because after adding an amino acid 
(labile carbon source) their adsorption depends on the 
acidity conditions of the medium, adsorbate properties, 
concentration applied and the microbial use prior to the 
sorption of the mineral surface (Gao et al., 2017). Also, 
the electrostatic interactions between adsorbates, par-
ticle surfaces, and adsorbate molecules are important in 
amino acid adsorption to minerals and that these inte-
ractions also depend on charged clay surfaces (Ding and 
Henrich´s, 2002; Apostel et al., 2017). The lower leucine 
retention by Inceptisol is consistent with the dominant 
clay type smectite (Table 1), present in the alluvial soils 
of central Chile (Besoain, 1985). The clay-sized fraction 
from the Alfisol soil dominated by kaolinite and repre-

sentative of the great granitic group of Chilean soils (Be-
soain, 1985; Rodriguez, 1993). This soil showed twice 
the recovery of clay-sized fraction from the Inceptisol. 
Subsequently and with a change in the slope, the next re-
covery could be associated with the paracrystalline clay 
1:1, dominant halloysite presented by the great group of 
red clay soils such as Ultisol (Besoain, 1985). Finally, the 
clay-sized fraction in Entisol and Andisol are dominated 
by the non-crystalline allophane clays present in the 
volcanic ash soils (Besoain, 1985), which presented the 
highest retention of amino acids of all the soils evaluated 
(Figure 1), which is consistent with their high reactivity.

The clear difference between the clay-sized frac-
tions of the soils evaluated and their capacity to retain 
an easily degradable soluble C compound such as leu-
cine, allow us to propose an indicator of C retention in 
Chilean soils given the recovery slope determined in this 
research.

Relationship between colloidal fractions 
parameters and leucine retention index

Chesire et al. (2000) used differences in IR spec-
troscopy to determine the nature of the OM attached 
to the clay, showing that the clay-sized fractions of the 
soil surface horizons had different C contents, depen-
ding on the input from vegetation or clay’s greater 
adsorptive capacity in the soil. This OM might present 
colloidal characteristics and OH border presence due 
to their complex structures (Cotrufo et al., 2019). All 
soil clay-sized fraction materials evaluated after diges-
tion with hydrogen peroxide showed a residual SOC 
content, probably due to incomplete dispersion during 
the digestion process of organic matter (Figure 4). This 
content of SOC residual remaining after digestion did 
not follow the same trend and was higher in the Entisol 
clay-sized fraction, followed by Andisol, Ultisol, Alfisol 
and finally Inceptisol. Thus, the clay-size fractions eva-
luated may have been affected regarding their ability to 
retain leucine by the presence of residual SOC. Therefo-
re, and for the experimental conditions of this research, 
Ala plus residual SOC content was considered a measu-
rement of the entire “colloidal fraction” and was corre-
lated with the retention index (Figure 4). The Ala plus 
the residual SOC content from the clay-size fractions 
was considered as the “total colloidal fraction reacti-
vity” which was related to the LRI suggesting that the 
residual SOC content did not affect clay-sized fractions’ 
ability to retain leucine (Figure 4). In this way, we can 
assume that the hydroxyls that bond with leucine mo-
lecules originate from the mineral fraction (clay-sized 
fraction) of each soil evaluated. Similarly, the structural 
organisation of the organo-mineral complexes appea-
red to be a major factor in the accumulation of organic 
compounds in the outer layers of the complexes (Bon-
nard et al., 2012; Kleber et al., 2015). Thus, it is appro-
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Figure 4.	Relationship between the Al extracted by ammonium acetate plus the residual SOC content from clay-sized mineral 
fractions (“Total colloidal fraction reactivity”) according to the determination of leucine retention index of the soils evaluated.
Figura 4.	Relación entre el Al extractado en acetato de amonio más el contenido residual de COS de las fracciones de tamaño 
de arcilla ("Fracción de reactividad coloidal total") según la determinación del índice de retención de leucina de los suelos 
evaluadas.

Figure 4. 
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priate to consider the ligand exchange due to positively 
charged amino groups on negatively charged mineral, 
since the main sorption mechanism for amino acids in 
soils (especially for neutral amino acids like Alanine 
and Leucine) is clearly related to the specific surface 
area of the sorbents, showing a stronger interaction 
with Al-OH-groups as Al(OH)3

- (Dipplod et al., 2014). 
However, regardless of the strength of the binding bet-
ween negatively charged mineral fraction (clay-sized) 
by amino groups and the positively charged mineral 
fraction surface of the carboxylic groups, both bindings 
should be considered to evaluate an efficient binding of 
amino acids over the mineral fractions in the soil (Gao 
et al., 2017). This sorption mechanism can be protec-
ting the amino acids from microbial degradation.

Based on the results of this study, it is proposed that 
the mineralogical composition of each clay-sized frac-
tion determines the leucine retention capacity of soils. 
Furthermore, leucine retention is produced mainly by 
hydroxyl edges in the colloidal fractions, that is when 

considering both the clay-sized fraction and the resi-
dual SOC in a pool. Also, iron oxides such as goethite 
are very strong sorbents in soils with a higher portion 
of OH-groups functional for ligand exchange with the 
carboxyl groups of amino acids (Dippold et al., 2014; 
Kleber et al., 2015). Therefore, it is important to consi-
der the different reactive soil fractions and the adsorp-
tion mechanisms involved in each fraction, in order to 
accurately evaluate the retention of carbon compounds 
by the soil. Chesire et al. (2000) suggested that added 
polysaccharide was adsorbed by clays by the hydrogen 
bonding involved in OH groups since there was no re-
tention of residual nitrogen during oxidation. Similarly, 
Kemmitt et al. (2008) suggested that the mineralisation 
of OM is regulated by an abiotic destabilising process 
that transforms non-bioavailable substrates into bioa-
vailable substrates without affecting the functionality of 
the microbial population. Furthermore, the OC associa-
ted with the mineral fraction does not inhibit additional 
sorption of dissolved OC, since the sorption process de-
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pends on the chemical characteristics of OC compounds 
and the mineral fraction properties (Jagadamma et al., 
2014), hence the stability of the soluble OC of the soil 
varies with the clay mineralogy and its interaction with 
hydrated iron oxides (Saidy et al., 2012; 2013).
 
CONCLUSIONS

A leucine retention index (LRI) produced by soil co-
lloidal fractions after incubation was proposed and re-
lated to extractable Al, the pH in NaF and residual SOC. 
This is indicative of the reactivity of soil colloidal frac-
tion represented by clay-sized fractions and residual 
SOC soils. A higher material reactivity produced more 
leucine retention by colloidal fractions, causing reten-
tion of soluble organic compounds and providing pro-
tection against the degradation of soil organic carbon.

The LRI proposed provides an estimate of the soil 
capacity to retain soluble carbon compounds that are 
easily degradable. However, further research is needed 
to extrapolate the results to other soil types under di-
fferent analysis conditions (e.g. land uses), as well as 
assessing the effects of use change dynamics on car-
bon sequestration capacity and how these changes are 
related to the biodiversity of soil microorganisms. We 
consider that it is necessary to separate the mineral 
fraction of the soil associated with soil organic matter 
(Particular Organic Matter; POM and Mineral Associa-
ted-Organic Matter pools; MAOM) and different scales 
of aggregates. Furthermore, it is essential to evaluate 
the microbial activity during incubation of reactive 
fractions with the amino acid leucine, to estimate “los-
ses by consumption” during the retention period.
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