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Gastrointestinal microorganisms in cats and dogs: a brief review

Microorganismos gastrointestinales en gatos y perros: una revision breve
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RESUMEN

El tracto gastrointestinal (GI) de animales contiene diferentes tipos de microorganismos conocido como la microbiota GI. Por mucho tiempo,
la microbiota GI ha generado interés porque los microorganismos GI estdn involucrados en muiltiples procesos fisiologicos en el hospedero, asi
perpetuando salud o enfermedad. Estudios recientes han demostrado que la microbiota GI de gatos y perros es tan compleja como en humanos y otros
animales, revelado con el uso de tecnologias de secuencia modernas y otras técnicas moleculares. La microbiota GI incluye miembros de todos los tres
dominios principales de vida (Archaea, Bacterias y Eucariotas), pero las bacterias son el grupo de microorganismos mds abundante y metabélicamente
activo. El estémago de gatos y perros esta principalmente poblado de Helicobacter spp., el cual en perros puede representar tanto como el 98% de
toda la microbiota bacteriana en el estomago. El intestino delgado contiene una microbiota mds diversa, conteniendo representantes de al menos cinco
diferentes filos bacterianos (principalmente Firmicutes y Bacteroidetes). El intestino grueso contiene el grupo de bacterias més abundante (~10'" células
bacterianas por gramo de contenido intestinal), diverso (al menos diez diferentes filos han sido detectados) y metabdlicamente relevante en el tracto
GI. La mayoria de las bacterias en el intestino grueso son anaerobios estrictos, los cuales dependen de la fermentacion de sustancias no digeridas para
subsistir. Aunque estudios recientes han dilucidado las complejidades de la microbiota GI en gatos y perros, mds investigacion todavia es necesaria para
encontrar maneras de manipular exitosamente los microorganismos GI para prevenir y/o tratar enfermedades GI.

Palabras clave: gastrointestinal, microbiota, gatos, perros.

SUMMARY

The gastrointestinal (GI) tract of animals contains different types of microorganisms known as the GI microbiota. The GI microbiota has long been
of interest because of its involvement in multiple physiological processes in the host, influencing health or disease. Recent studies have shown that the
GI microbiota of cats and dogs is as complex as the one present in humans and other animals, according to state-of-the-art sequencing technologies
and other molecular techniques. The GI microbiota includes members of all three main life domains (Archaea, Bacteria, and Eukaryotes), with bacteria
being the most abundant and metabolically active group of microorganisms. The stomach of cats and dogs is mainly inhabited by Helicobacter spp.,
which in dogs may account for as much as 98% of all gastric bacterial microbiota. The small intestine harbors a more diverse microbiota as it contains
representatives from at least five bacterial phyla (mainly Firmicutes and Bacteroidetes). The large intestine harbors the most abundant (~10'" bacterial
cells per gram of intestinal content), diverse (at least 10 bacterial phyla have been identified) and physiologically relevant group of bacteria in the GI
tract. Most bacteria in the large intestine are strict anaerobes that depend on fermentation of non-digested dietary substances to subsist. Although recent
studies are shedding light into the complexity of the GI microbiota in cats and dogs, further research is needed to find ways to successfully manipulate
GI microorganisms to prevent and/or treat GI diseases.

Key words: gastrointestinal, microbiota, cats, dogs.

INTRODUCTION

The gastrointestinal (GI) tract of animals is coloni-
sed by a dense and heterogeneous group of microorga-
nisms known as the GI microbiota, which supply more
than nine million unique genes to the gene repertoire in
the eukaryotic host (Yang et al 2009). The GI microbiota
has long been of interest because of its involvement in
multiple physiological processes in the host, including
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resistance against colonization by pathogens (Stecher
and Hardt 2011), production of useful substances that act
as energy source for intestinal epithelial cells (Louis and
Flint 2009), modulation of the intestinal immune system
(Hooper and Macpherson 2010), salvage of energy from
undigested dietary components (Cummings and Macfar-
lane 1997), and stimulation of intestinal angiogenesis
(Stappenbeck et al 2002).

Most of the current information about the composi-
tion and activity of the GI microbiota comes from studies
in human populations. However, an increasing number
of investigations have also studied intestinal microbes
in other animals, especially cats and dogs (Suchodol-
ski 2011). This review summarises current information
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about the GI microbiota with emphasis on the GI bacte-
rial microbiota of cats and dogs.

THE GI MICROBIOTA

The GI tract of animals is one of the most complex
microbial ecosystems on Earth, and it is continuously
affected by factors associated with the host (Spor et al
2011, Van den Abbeele er al 2011) and the outside en-
vironment (Claesson ef al 2012). This complexity has
been an obstacle to study single independent factors as-
sociated with its changes over time and among different
populations of animals (e.g., healthy and diseased). Also,
it is often difficult to determine the nature of the interac-
tions among the microorganisms during health or disea-
se, although recent advances in mathematical modeling
could help understand this phenomenon (Hellweger and
Bucci 2009, Arciero et al 2010). Moreover, there are con-
troversies with regards to the way we classify microbial
species (Staley 2006, Schleifer 2009). Despite this com-
plexity, there is a growing body of literature suggesting
that the GI microbiota can be studied objectively, and that
health could be enhanced in the host through manipula-
tion of its constitutive intestinal microbial populations.

CHARACTERIZATION OF THE GI MICROBIOTA
CULTURE METHODS

The characterization of the GI microbiota is the first
step in determining its role in health or disease. Classic
culture methods have the advantages of being relatively
inexpensive, widely available, and suitable for bioche-
mical and physiological studies, and therefore have been
extensively used to characterise the GI microbiota of
cats and dogs (see below). However, the usefulness of
culture techniques to characterise microorganisms in the
gut and elsewhere has long been questioned because it
is not representative enough regarding both enumeration
and community structure (Ritz 2007). While experts ge-
nerally agree that about 99% of all GI microorganisms
have not been successfully cultured (Tap e al 2009), a
recent article showed that about 70% of all fecal bacte-
rial genera (as determined by pyrosequencing) could be
successfully cultured using an in-house culture media
containing a mixture of several commercially available
ingredients (Goodman et al 2011). Modifications to this
universal gut microbiota media will facilitate the culture
of more intestinal microorganisms and make possible a
correlation between microbial abundance and utilization
of dietary substances.

MOLECULAR METHODS

In contrast to culture methods, which rely on the iden-
tification of GI microorganisms by means of a phenoty-
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pic characterization, molecular methodologies aim to
identify and categorise microorganisms by means of de-
tecting specific molecules inside the cells (e.g., DNA or
RNA) (Zuckerkandl and Pauling 1965). The 16S rRNA
gene has often been used to identify bacteria because it
is universally distributed and appears to have undergone
a relatively slow change in base pair composition throug-
hout evolution (Fox er al 1980). In other words, the 16S
rRNA gene contains conserved regions (same among all
bacteria) as well as variable and highly variable regions
that allow the distinction and classification of bacterial
phylotypes, according to theories of molecular evolution
(Lemey et al 2009). Some examples of methodological
differences between culture-based and culture-indepen-
dent approaches include survey depth (tens to hundreds
of cultural isolates versus thousands to millions of 16S
rRNA gene sequences), accuracy of bacterial 16S rRNA
gene assignments, and documentation of the generated
data (Goodman et al 2011). A summary of the most com-
monly used methods and techniques to study the gas-
trointestinal microbiota is presented in table 1.

Polymerase chain reaction (PCR). PCR is a common and
often indispensable molecular technique to characterize
the GI microbiota. Currently, PCR is performed using
a heat-stable DNA polymerase which can generate mi-
llions of copies of a given target sequence (e.g., a 16S
rRNA gene fragment) in one hour or less. Some sequen-
cing techniques require the use of PCR for generating
amplicons (i.e., DNA fragments amplified by PCR). It
is important to note that all PCR-based techniques suffer
from several biases, including the fact that the generated
16S rRNA gene copies cannot be accurately extrapola-
ted to the number of the microorganisms themselves, in
part because different bacteria have different number of
copies of this gene even within the same species (Acinas
et al 2004, Lee et al 2008). Interestingly, these differen-
ces in the number of copies of the 16S rRNA gene may
reflect ecological strategies of bacteria in respond to re-
source availability (Klappenbach et al 2000).

Fingerprinting methods. The obtained 16S rRNA gene
amplicons (e.g., from intestinal contents) are often the
same size in number of base pairs, and therefore would
appear as a single band in an agarose or polyacrylamide
gel. However, these amplicons are likely to differ from
one another in their base pair composition. When expo-
sed to a denaturing agent or to increasing temperatures,
these differences in base pair composition make the am-
plicons migrate at a different speed throughout a gel ma-
trix. Denaturing Gradient Gel Electrophoresis (DGGE)
and Temperature Gradient Gel Electrophoresis (TGGE)
are examples of molecular fingerprinting methods that
separate amplicons based on this principle. In particular,
DGGE has been shown to be useful to assess qualitative
variations in the GI microbiota of dogs among different
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compartments of the intestinal tract (Suchodolski et al
2005). The result of DGGE or TGGE analysis is a speci-
fic banding pattern for every sample analysed, therefore
providing a qualitative view of the microbial composition
of the sample. However, fingerprinting techniques are not
very useful to characterise microbial ecosystems becau-
se they often fail to accurately separate 16S rRNA gene
fragments (Jackson et al 2000, Nikolausz et al 2005),
thus underestimating the true bacterial diversity and its
changes against external perturbations.

Quantitative real-time PCR (qPCR). In conventional
PCR, the amplicons are routinely detected using elec-
trophoresis on agarose gels after the PCR has finished.
Because of this, traditional PCR is not capable of quan-
tifying the genomic targets; it only provides information
about the presence (band in the gel) or absence (no band
in the gel) of the target. In contrast, PCR has been adapted
to also allow the quantification of the unknown genomic
targets as the PCR progresses (in real-time). This is pos-
sible by including in the PCR reaction a fluorescent mo-
lecule that reports an increase in the amount of DNA with
a proportional increase in fluorescent signal. The fluores-
cent chemistries employed for this purpose include DNA-
binding dyes and fluorescently-labeled sequence-specific
primers or probes. qPCR has been widely used to assess
the effect of different treatments on the abundance of the
GI microbiota in cats and dogs (Gronvold et al 2010, Gar-
cia-Mazcorro et al 2011) as well as in humans (Malinen
et al 2005, Larsen et al 2011). However, bacterial cell
numbers cannot directly be estimated from qPCR data in
part because the cellular genome content varies with the
growth phase of the organisms and bacteria have different
number of copies of the 16S rRNA gene (see PCR above).

Fluorescence in situ hybridization (FISH). The detection
of bacterial genomic targets using qPCR is useful when
evaluating changes in the quantitative abundance of the mi-
crobiota, for example during administration of probiotics
or therapeutic agents. However, the accurate extrapolation
from amplified genomic targets to the actual numbers of
bacterial cells is often difficult, mainly because bacteria
have different copy numbers of the 16S rRNA gene. Unlike
gPCR, FISH is capable of quantifying the actual bacterial
cells by direct labeling of the 16S rRNA using fluores-
cently-labeled oligonucleotides. The FISH technique takes
advantage of the fact that each bacterium usually contains
thousands of ribosomes spread throughout the cell. Theo-
retically, like in PCR, it is possible to develop oligonucleo-
tides that are capable to detect microorganisms at all taxo-
nomic levels (i.e., Phylum, Class, Order, Family, Genus).
However, this is often challenging due to high similarities
in the 16S rRNA gene composition among phylogenetically
related microorganisms. FISH can also provide important
information about the morphology and spatial distribution
of microorganisms in the GI tract (Simpson et al 2006).
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Sequencing technologies. The identity of each 16S rRNA
gene amplicon can be determined by estimating the or-
der of the base pairs (sequencing). This has been tradi-
tionally done using nucleotides base analogs (dideoxy-
nucleotides) that lack the 3’-hydroxil group essential in
phosphodiester bond formation, which act as specific
chain-terminating inhibitors of DNA polymerase (San-
ger et al 1977). This Sanger method is still used routi-
nely in many laboratories for sequencing low number
of samples. However, complex microbial ecosystems
such as the intestinal tract contain millions of microor-
ganisms, which makes necessary to clone and sequence
thousands of individual PCR amplicons in order to ob-
tain a representative view of the microbial composition.
Recently developed high-throughput techniques such as
454-pyrosequencing (Margulies et al 2005) are capable
of sequencing millions of base pairs in one hour or less,
and have shown to be useful to study the feline and ca-
nine GI microbiota (Suchodolski et al 2009, Middelbos
et al 2010, Garcia-Mazcorro ef al 2011, Handl ef al 2011).
Other high-throughput techniques are based on different
principles (e.g., reverse termination) and are discussed
elsewhere (Pettersson et al 2009). Interestingly, a non-
optical genome sequencing has been developed (Roth-
berg et al 2011), which promises a better performance
than traditional optical-based sequencing. Nonetheless,
the cost and necessary expertise for both sequencing and
after-sequencing analysis procedures make most of the-
se techniques inaccessible for many scientists around the
globe. Fortunately, a number of freely available software
platforms have been developed such as QIIME (Quantita-
tive Insights into Microbial Ecology'), which is capable of
analyzing thousands of sequences in short periods of time.
QIIME also offers free comprehensive guides for begin-
ners as well as expert advice for more advanced users.

THE COMPOSITION OF THE GI MICROBIOTA

The composition and metabolic activity of the GI mi-
crobiota varies along the GI tract, in part reflecting ana-
tomical and physiological conditions inherent to each of
the intestinal sections. In cats and dogs, as well as in other
monogastric animals, both the bacterial diversity (an index
that incorporates the number of species in an area and their
relative abundance) and richness (number of species) are
higher in the large intestine when compared to the stomach
and all regions of the small intestine (Ritchie e al 2008, Su-
chodolski er al 2008). The GI microbiota includes all three
major domains of life (Archaea, Bacteria, and Eukaryotes),
but bacteria make up the most abundant and metabolically
active group of microorganisms in the GI tract. For exam-
ple, a recent metagenomic study showed that bacteria may
represent as much as 98% of all fecal microbiota in dogs,
with Archaea, Eukaryotes, and viruses representing only

' http://www.qiime.org/
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about 2% (Swanson ef al 2011). Similarly, a recent study 16S rRNA gene (Baker ef al 2003), as well as inherent
also used a metagenomic approach and showed that Eukar- differences among the techniques utilized to characterize
yotes, Archaea, and viruses were minor constituents (< 3%) the microbiota (Zoetendal et al 2004, Kunin et al 2010).
of the fecal microbiota in cats, while bacteria represented Early culture-based studies suggested that the distal part
the great majority (97.8%) (Tun et al 2012). of the human intestinal tract may harbor about 300 differ-
In monogastric animals, the large intestine contains ent bacterial species (Moore and Holdeman 1975, Savage
the most abundant, diverse and metabolically relevant 1977). However, recent culture-independent studies sug-
group of bacteria in the GI tract. The large intestine con- gest that on average humans have an estimated richness of
tains bacterial groups mainly within the phyla Firmicutes 943 bacterial species (operational taxonomic units or OTUs
and Bacteroidetes. Other phyla such as Actinobacteria, at 98% similarity) in faeces per subject (Tap et al 2009). In
Proteobacteria, Fusobacteria, Spirochaetes, Verrucomi- contrast, one study suggested that cats and dogs may harbor
crobia, Cyanobacteria, and Tenericutes are also frequent- only 60 (cats) and 39 (dogs) OTUs (97% similarity) in fae-
ly identified but their proportions are usually low. How- ces per subject (Handl et al 2011). This agrees with other
ever, the exact proportions of each bacterial group vary studies that showed the presence of only 84 and 52 OTUs
widely throughout the literature. For example, one study in the colon of cats and dogs based on a 98% similarity cri-
showed that healthy cats and dogs may harbor > 90% terion (Ritchie er al 2008, Suchodolski ez al 2008).
of Firmicutes in faeces (Handl et al 2011), while others
have shown that these animal species may only harbor THE GI MICROBIOTA OF CATS AND DOGS
~ 13% (cats) and ~ 35% (dogs) of this phylum also in
faeces (Swanson ef al 2011, Tun et al 2012). The reasons An overview of some of the most relevant investiga-
for these discrepancies (see below) are unknown but may tions of the GI microbiota in cats and dogs is presented
include differences in DNA extraction protocols (Zoeten- in table 2. Among all regions of the GI tract of these and
dal et al 2001), intra-stool variability of intestinal micro- other animal species, the distal part of the intestinal tract
organisms (Garcia-Mazcorro et al 2009), inter-individual (i.e. fecal microbiota) has been the most widely studied
differences (Handl et al 2011), the target region of the to date (figure 1), mainly because of the ease of sampling.
A PHYLUM ORDER GENUS 8) PHYLUM ORDER GENUS
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Figure 1. Simplified view of the faecal bacterial composition of dogs (A, left) and cats (B, right) at phylum, order and genus level.
Numbers represent the average (minimum-maximum) of the relative proportions of sequences (number of sequences obtained from
the bacterial group divided by the total number of sequences obtained), calculated according to both a published (Garcia-Mazcorro et
al 2011, 12 dogs and 12 cats) and an unpublished (Weber et al 10 dogs and 10 cats) study using 454-pyrosequencing with the same
primer set. Clostridium was the most abundant genus in both cats and dogs ( > 20% on average in both studies) but it does not appear
in this figure due to uncertain taxonomic classification. At the phylum level, we also included the approximate estimates (*) published
by Swanson ef al (2011) and Tun et al (2012) using a metagenomics approach (please see main text for more details).

Vision simplificada de la composicion bacteriana fecal en perros (A, izquierda) y gatos (B, derecha) al nivel de filo, orden y género. Los nimeros
son promedios (minimo-méximo) de proporciones relativas de secuencias (nimero de secuencias obtenidas del grupo bacteriano dividido entre el nimero
total de secuencias obtenidas) calculado de un estudio publicado (Garcia-Mazcorro et al 2011, 12 perros y 12 gatos) y un estudio no publicado (Weber et al
10 perros y 10 gatos) usando 454-pirosecuenciacion con el mismo par de oligonucleétidos. Clostridium fue el género mds abundante en gatos y perros
(>20% en promedio en ambos estudios) pero fue omitido en esta figura debido a clasificacion taxonémica incierta. Al nivel de filo, también se incluyeron
los estimados aproximados (*) publicados por Swanson et al (2011) y Tun et al (2012) usando un método metagenémico (ver texto para mas detalles).
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It is important to keep in mind that there are important
differences in the reported abundances of GI microorga-
nisms among different studies. This may be due to the
DNA extraction method employed as well as the number
of copies and the target region within the 16S rRNA gene
(see above). A good example of these discrepancies is the
recent summary of Armougom and Raoult (2008) about
Firmicutes and Bacteroidetes in humans and mice.

THE GI MICROBIOTA OF CATS

Stomach. The stomach of animals was traditionally
thought to lack a complex microbial ecosystem. This be-
lief was sustained in part by the observation that gastric
acid kills several microorganisms instantly (Giannella et
al 1972). However, culture-independent molecular tech-
niques are revealing a different story. An early study used
several detection techniques and showed that the stomach
of 91% of pet cats (n=58) were positive for the genus
Helicobacter (Neiger et al 1998), suggesting a high oc-
currence of this bacterial group in the feline stomach. In
another study, it was shown that cats and dogs are pre-
dominantly coloniszed by H. heilmannii (Priestnall et al
2004) but other species (e.g., H. felis, H. bizzozeronii, H.
salomonis, H. pametensis) have also been identified in
these animal species (Neiger and Simpson 2000).

Small intestine. Osbaldiston and Stowe (1971) were
among the first to investigate the composition of the GI
microbiota in cats (n = 12) using a wide variety of culture
media. In this study, coliforms, Streptococcus, Entero-
coccus, and Lactobacillus were the predominant groups
of bacteria along the feline GI tract. Other earlier studies
suggested that Bacteroides and Clostridium spp. were the
most common bacteria in the duodenum of cats (Papa-
souliotis et al 1998, Johnston et al 2001), also based on
cultural isolates. Similarly, a recent study used molecular
techniques and suggested that the small intestine (i.e.,
jejunum) of cats harbors mainly the orders Clostridiales
and Lactobacillales (~ 90%) but also small proportions of
at least five more orders, while the ileum and the colon
both harbored a high proportion ( > 50%) of Clostridiales
with low proportions of Actinobacteria (~ 5%) (Ritchie
et al 2008).

Large intestine. A recent study sequenced the gene enco-
ding the universal 60 kDa chaperonin and showed that the
faecal microbiota of cats was dominated by Actinobacte-
ria (~ 53%) and Firmicutes (~ 40%) (Desai et al 2009).
Recent studies using 454-pyrosequencing suggest that >
90% of all sequences obtained from feces of healthy cats
belong to the Phylum Firmicutes (Garcia-Mazcorro et al
2011, Handl ez al 2011), especially members of the fa-
mily Clostridiaceae, while a metagenomic study suggests
that Bacteroidetes/Chlorobi is the most abundant bacte-
rial group (~ 68%), followed by Firmicutes (~ 13%) and
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Proteobacteria (~ 6%) also in faeces of cats (Tun er al
2012). However, it is important to point out that the study
by Tun et al also reports that Bacteroidetes only repre-
sented ~ 9% of the obtained sequence reads, while the
phyla Chlorobi and Chloroflexi represented less than 1%
of the reads. Thus, it is not clear which group represented
the remaining ~ 59% of difference between the reported
percentage of the Bacteroidetes/Chlorobi group (~ 68%)
and the reported percentage of Bacteroidetes alone (~
9%). We speculate that these discrepancies in the repor-
ted percentages may be due in part to the pipeline used to
assign taxonomies.

In part because most GI microorganisms have not
been successfully cultured, little is known about the
phenotype of the GI microbiota in cats. The three major
short-chain fatty acids (SCFA) found in cats are butyrate,
acetate, and propionate (Brosey et al 2000). In particular,
butyrate is considered to play a vital role in colonic hu-
man health (Hamer et al 2008, Louis and Flint, 2009) but
little is known about its role in intestinal health of cats.
Nonetheless, butyrate-producing bacteria are commonly
found in feces of cats (Handl er al 2011).

THE GI MICROBIOTA OF DOGS

Stomach. A study published last year showed that the sto-
mach of healthy dogs is home of a diverse microbiota (at
least 4 phyla were identified), as evaluated by 454-pyro-
sequencing (Garcia-Mazcorro et al 20127). Despite this
diversity, one single genus (i.e., Helicobacter) was by
far the most predominant (~ 98% of all gastric microbio-
ta). These results are in accordance with one study that
showed that the human stomach is also home of a diverse
microbiota, although the genus Helicobacter (H. pylori
only) constituted only 42% of all sequences analyzed
(Bik et al 2006).

Small intestine. Clapper and Meade (1963) attempted
one of the first characterizations of bacteria and fungi
in the lower intestinal tract of dogs using twelve diffe-
rent types of culture media. Using rectal swabs from 25
healthy Beagle dogs, the authors isolated 20 species of
bacteria and 10 species of fungi (Clapper and Meade
1963). More recent studies using molecular techniques
have shown the presence of at least four different bac-
terial phyla in the intestinal tract of dogs, namely Fir-
micutes (47.7%), Proteobacteria (23.3%), Fusobacteria
(16.6%), and Bacteroidetes (16.6%) (Suchodolski et al
2008). Interestingly, these proportions differed depen-
ding on the intestinal compartment analyzed, with duo-
denum and jejunum containing more than 50% Firmi-
cutes, while the ileum and colon only harbored ~ 30%
of this phylum (Suchodolski er al 2008). Still, a more
recent study used 454-pyrosequencing and identified ten
bacterial phyla in the jejunum of dogs (Suchodolski et
al 2009), although more than half of these groups were



only found in very low proportions (< 1% of all micro-
biota). A recent article used FISH to quantify bacteria in
the duodenal biopsies of dogs and found a median of zero
bacteria (range: 0-3) per microscopic field using almost
1000 microscopic fields (Garcia-Mazcorro et al 2012%).
In contrast, the same article found a high bacterial diver-
sity (median: 173 OTUs) using 454-pyrosequencing also
in duodenal biopsies from the same dogs. The reasons
for this discrepancy are unknown but it may relate to the
destruction of intestinal mucus during formalin fixation
of the biopsies before paraffin embedding.

Large intestine. Some studies suggest that, in faeces,
Firmicutes represent the great majority (> 90%) of the
faecal microbiota in dogs (Garcia-Mazcorro et al 2011,
Handl ef al 2011). On the other hand, a recent metage-
nomic study suggested that the Bacteroidetes/Chlorobi
group and Firmicutes were the dominant bacterial phyla
(~ 35%), followed by Proteobacteria (~ 15%) and Fuso-
bacteria (~ 8%) also in faeces of dogs (Swanson et al
2011). However, the results of this study show, just as in
the reports of Tun er al, that Bacteroidetes only represen-
ted ~ 3% of all the obtained reads, while the Chloroflexi
and the Chlorobi groups represented less than 1% of the
reads. Therefore, it is not clear which group represented
the difference between the reported percentage of the
Bacteroidetes/Chlorobi group (~ 35%) and the percen-
tage of Bacteroidetes alone (~ 3%). It is possible that the
remaining percentage represents unclassified members of
Bacteroidetes, but this has been scarcely discussed in the
available literature.

As mentioned above, little is known about the phe-
notype of GI microorganisms in cats and dogs. As in
cats, the major SCFA in dogs are butyrate, acetate, and
propionate (Swanson et al 2002). A butyrate-producer
bacterium that has attracted much attention for its role in
intestinal health of humans is Faecalibacterium praus-
nitzii (Sokol et al 2009). A recent article suggests that
Faecalibacterium-relatives are also abundant in faeces
of dogs (Garcia-Mazcorro et al 2012%), although it has
been suggested that canine Faecalibacterium spp. may
not be F. prausnitzii, based on phylogenetic analysis of
near-full-length 16S rRNA gene sequences belonging
to a canine clone and a human strain (Suchodolski et al
2008). Other butyrate-producers bacteria such as Eubac-
terium and Roseburia have been found in dogs and cats
(Handl ez al 2011).

MANIPULATION OF THE GI MICROBIOTA

Acknowledging that GI microbiota is closely invol-
ved in the wellbeing of the host led to the idea of manipu-
lating intestinal microorganisms to enhance health. Seve-
ral approaches have been used to accomplish this goal in
cats and dogs (see below). In contrast, the consumption
of therapeutic agents such as antibiotics can also lead to
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unintended modifications of the GI microbiota, although
less research on this topic is available in cats and dogs.

PROBIOTICS AND PREBIOTICS

Probiotics can be defined as live microorganisms that,
if consumed in adequate amounts, would provide a health
benefit to the host (FAO/WHO, 2002). On the other hand,
prebiotics are selectively fermented ingredients that cau-
se specific changes in the composition and/or activity of
the gastrointestinal microbiota (Gibson et al 2010), thus
also conferring health benefits on the host, while synbio-
tics are preparations containing both probiotics and pre-
biotics.

Sunvold et al (1995) were among the first to evaluate
the in vitro effect of a prebiotic on faecal fermentation
patterns of cats and dogs. In this study, the addition of fi-
ber (citrus pulp) led to a higher organic matter disappear-
ance and lower acetate to propionate ratio in both dogs
and cats; however, these changes were not correlated
with modification of the faecal microbiota. While other
studies have also researched the properties and effects
of probiotics and prebiotics on the composition and/or
activity of the canine and feline intestinal microbiota in
vitro (Strompfova et al 2004, Cutrignelli et al 2009) and
in vivo (Vanhoutte et al 2005, Biagi et al 2007), most of
these investigations have only studied selected intestinal
bacterial groups, an approach that does not fully assess
the effect of probiotics and prebiotics on the intestinal
microbial ecosystem. A recent study investigated the ef-
fect of a commercial preparation of probiotics and prebi-
otics on the faecal microbial composition of healthy cats
and dogs using several molecular techniques, including a
high-throughput sequencing technique (Garcia-Mazcor-
ro et al 2011). Similarly to other studies, the authors of
this investigation showed that the consumption of the for-
mulation leads to increases in faecal abundance of the in-
gested microorganisms, a change that rapidly disappears
2-3 days after consumption of the preparation. Interest-
ingly, these quantitative changes in specific bacterial
groups did not seem to lead to major modifications in the
overall phylogenetic composition of the fecal microbiota,
as evaluated by 454-pyrosequencing. This is an interest-
ing observation because probiotics are thought to modu-
late the intestinal microbiota, including other, unrelated
to the ingested microorganisms, bacteria. This modula-
tion effect of probiotics on the intestinal microbiota has
also been suggested in humans, as evaluated by culture
(Venturi et al 1999) and molecular techniques (Larsen
et al 2011), although the results are also controversial.
For example, one study showed that the consumption
of a synbiotic preparation leads to changes in bacterial
populations but no significant differences in fecal chem-
istry (Worthley et al 2009), while others propose that the
intake of a synbiotic food leads to modulation of the gut
metabolic activities with a maintenance of gut “biostruc-
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ture” (Vitali et al 2010). The discrepancy among differ-
ent investigations may be due to the amount and types of
probiotics administered (Pagnini et al 2010), as well as
the combination and potential synergistic effect of differ-
ent microorganisms. While some researchers encourage
the design and use of several strains and/or species of
microorganisms in probiotic formulations (Timmerman
et al 2004), few data support a more beneficial effect
of these multi-strains/species preparations compared to
single strain preparations.

ANTIBIOTICS

Antibiotics are commonly used in Veterinary Medi-
cine, but concerns have been raised about the potential
reservoir of antibiotic resistance among the native intes-
tinal microbiota of animals (Moyaert et al 2006). While
in humans the effect of antibiotics on the intestinal mi-
crobiota has been characterised in depth (Dethlefsen and
Relman 2011), little is known about the effect of antibio-
tics on the GI microbiota of cats and dogs. Johnston et al
(1999) evaluated changes in duodenal bacteria of cats (n
= 6) during metronidazole treatment, but this study only
used culture techniques. Suchodolski et al (2009) analy-
zed changes in the small intestinal microbiota of dogs (n
= 5) during administration of tylosin using 454-pyrose-
quencing. In this study, several changes in the abundance
of different bacterial groups were observed, including an
increase in the proportions of Enterococcus spp. which
have been reported to be resistant to tylosin. However,
these changes in bacterial amounts were not accompa-
nied by any obvious clinical effect. Grgnvold et al (2010)
studied changes in faecal microbiota of healthy dogs (n
= 7) during administration of amoxicilin using DGGE
and qPCR. In this study, most of the variation in DGGE
band profiles could be attributed to dog-specific factors,
suggesting a minimal change in the composition of the
fecal microbiota, as determined by the employed tech-
niques.

INHIBITORS OF GASTRIC ACID SECRETION

Gastric acid is one of the first physiological barriers
to impede the passage of potentially harmful agents into
the intestinal tract. It is believed that inhibitors of gas-
tric acid secretion can change the composition of the
GI microbiota (Heidelbaugh et al 2009, Lombardo et al
2010), but only few studies support this statement and
have mainly used culture techniques to study specific mi-
croorganisms (e.g. Helicobacter pylori). A recent study
used a combination of several molecular techniques and
concluded that the proton-pump inhibitor omeprazole
can change the quantitative abundance of several gastric,
duodenal and faecal microorganisms in healthy dogs, a
change that did not seem to lead to major shifts in the
overall phylogenetic composition of the gastric and small
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intestinal microbiota (Garcia-Mazcorro et al 2012%). In-
terestingly, the observed effect of omeprazole on the ca-
nine GI microbiota was dependent on the gender of the
animals, perhaps suggesting a distinctive metabolism of
the drug in male and female dogs.

CONCLUDING REMARKS

The GI tract of cats and dogs harbors a complex mi-
crobiota. The study of GI microorganisms is of interest
because of its close relationship with the wellbeing of
the host. Also, an increasing number of investigations
suggest that GI microorganisms may play a role in the
etiology of various GI disorders. However, little is known
about what represents a healthy microbiota, its normal
biological variations within and among individuals, and
how to successfully manipulate it to prevent or treat GI
disease. In order to achieve this goal, future collaborati-
ve studies should complement phylogenetic characteri-
zations of the GI microbiota with functional (metabolic)
analyses.
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