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ABSTRACT. The current study aimed to evaluate the antimicrobial activity of carvacrol-loaded invasomes (CLI) against 
multidrug-resistant (MDR) Enterobacteriaceae and its mechanical vector, the housefly. CLI were prepared and charac-
terized in the laboratory. Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar Enteritidis, 
Salmonella enterica subsp. enterica serovar Typhimurium, and Klebsiella oxytoca were among the MDR enterobacteriaceae 
stains investigated. These strains were first isolated and identified from naturally infected chickens. The antibacterial ac-
tivity of CLI against the MDR isolates was evaluated using the diffusion method. In addition, the insecticidal activity of CLI 
against housefly larvae and pupae was tested. The MDR index of all evaluated isolates was greater than 20%, indicating 
that they were all multidrug-resistant. CLI decreased the growth of all isolates except S. Typhimurium and P. aeruginosa 
at a dose of 0.0125%; however, pure carvacrol inhibited the growth of only Klebsiella oxytoca. Furthermore, both CLI 
and pure carvacrol inhibited Klebsiella oxytoca growth at different concentrations. CLI inhibited E. coli and S. enteritidis 
at lower concentrations than pure carvacrol, even at a doubled concentration. Carvacrol and CLI caused significant larval 
mortality even at low concentrations, with LC50 reached at concentartions of 2.54 and 2.19 µl/ml, respectively. Further-
more, at a low concentration of 3.125 µl/ml, both elicited a high percentage inhibition rate (PIR) in pupae. In conclusion, 
CLI demonstrated substantial antibacterial action, particularly against MDR isolates, as well as pesticide activity against 
houseflies. 
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INTRODUCTION

Antimicrobial drugs are frequently given to chickens 
to promote growth and prevent diseases, but prolonged 
usage or improper use commonly results in bacterial re-
sistance (Fielding et al., 2012), a problem that is becoming 
increasingly prevalent in humans and animals worldwide 
(Spellberg, 2014). The WHO proposed global programs 
for both human and animal surveillance in light of this 
increasing threat. Antimicrobial resistance in chickens is 
a common problem in developing countries because of 
the indiscriminate use of antibiotics as feed additives and 
the prophylactic treatment of infectious diseases. Because 
there are few or no alternative effective antimicrobial 
drugs available for the treatment of diseases caused by 
these bacteria, the evolution of bacterial resistance to an-
timicrobial treatments has become a serious public health 
concern (Al Azad et al., 2019). Consequently, the chicken 
industry has recently piqued interest in investigating phy-

tobiotics as an alternative to synthetic antibiotics (Altay et 
al., 2022). 

Escherichia coli is a bacterium that has a special place in 
the microbiological community because it not only causes 
serious infections in humans and animals but also con-
tributes significantly to the autochthonous microbiota of 
different species. The potential transmission of virulent 
and/or resistant E. coli from animals to humans via several 
pathways, including direct contact, contact with animal ex-
cretions, and the food chain, is a major source of concern. 
Additionally, E. coli is a significant reservoir of resistance 
genes, which could be the reason why some treatments in 
both human and veterinary medicine are ineffective (Ag-
atha et al., 2023; Bassi et al., 2023). Multidrug resistance in 
E. coli has recently become a global concern (Poirel et al., 
2018).

Musca domestica, the housefly, is a vector for over 100 
human and animal diseases, mainly food-borne pathogens 
(Kumar et al., 2013, 2014). Chemical insecticides are often 
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used to control houseflies. Long-term use of these chemical 
insecticides has serious consequences for human and animal 
health as well as detrimental effects on the environment (Ku-
mar et al., 2012). Given the previously noted increased rate of 
antibiotic resistance as well as the side effects and disadvan-
tages of insecticides, novel approaches to overcome these 
obstacles are urgently required. As a result, there is an urgent 
need to investigate better alternatives to antibiotics to en-
sure the production of safe and profitable poultry.

Natural bioactive compounds derived from plants 
could be potential alternative candidates (Pavela, 2013; 
Abdel-Baki et al., 2021). One of these compounds is car-
vacrol, a phenolic monoterpenoid found in essential oils of 
different plant species. Carvacrol has been demonstrated 
to have several biological effects, including antibacterial 
and antifungal properties (Chavan & Tupe, 2014), antivi-
ral activity (Sánchez et al., 2015), antioxidant properties, 
immune response regulation (Khazdair et al., 2018), and 
anti-inflammatory properties (Fitsiou et al., 2016). 

According to Di Pasqua et al. (2010), carvacrol interacts 
with the cell membrane via hydrogen bonding, making 
the membranes and mitochondria more permeable and 
disintegrating the outer cell membrane. Several in vitro 
studies have revealed that carvacrol and thymol have potent 
antibacterial activity against pathogenic bacteria, including 
E. coli and S. typhimurium (Gholami-Ahangaran et al., 
2020). Carvacrol is more effective against gram-positive 
bacteria than gram-negative bacteria; it damages bacterial 
membranes, reduces ATP generation, and consequently 
energy-dependent cell functions (Nostro & Papalia, 2012). 
However, the application of carvacrol is limited by its high 
volatility, low water solubility, and low stability (Donsì et 
al., 2014; Locci et al., 2004). 

Carvacrol nanoformulations, such as nanocarriers, are 
a strategy to overcome these constraints. Nanocarriers 
have been utilized to increase the chemical and physical 
stability of essential oils, reduce organoleptic alterations, 
and promote biological activity (Moraes-Lovison et al., 
2017; Ryu et al., 2018; Noori et al., 2018; Chuesiang et al., 
2019). Invasomes are one of these nanocarriers that have 
been used frequently (Kamran et al., 2016). Invasomes are 
composed of unsaturated phospholipids, water, and trace 
amounts of ethanol and terpenes, which increase perme-
ability and bioavailability (Aslam et al., 2015; Dwivedi et al., 
2016; Kumar et al., 2022).  

In the current study, a carvacrol-loaded invasome (CLI) 
was similarly prepared, with terpenes responsible for the 
biocidal effect enhancing CLI solubility and penetration of 
the larval cuticle by disrupting lipid/protein layers and/or 
removing skin micro-ingredients required for skin barrier 
maintenance (Sapra et al., 2008; Kumar et al., 2022). 

In the present study, the prepared carvacrol-loaded in-
vasome (CLI) was tested against multidrug resistant iso-
lates of E. coli, S. enterica Enteritidis, S. enterica Typhimuri-
um, and P. aeruginosa, as well as the mechanical vector of 
these microorganisms’ housefly.

MATERIALS AND METHODS

Preparation and characterization of Carvacrol-Loaded 
Invasome (CLI)

In our laboratory, a carvacrol-loaded invasome (CLI) 
was prepared and characterized as described by Gamal 
et al. (2023). In brief, a carvacrol-loaded invasome (CLI) 
formulation was produced using a thin hydration meth-
od. Carvacrol (10 mg), cineole (1% v/v), cholesterol (0.15 
%w/w), and phospholipid (3% w/w) were dissolved in 10 
mL organic solution of chloroform and methanol (3:1). This 
solution was evaporated under vacuum using a Stuart ro-
tary evaporator (RE300, UK) at a speed of 100 rpm and 
temperature of 40 °C. During evaporation, a thin layer of 
invasomes formed inside the flask. At 40 °C for an hour, 
isotonic phosphate buffer (IPB, pH 5.5) solution and etha-
nol (3% v/v) solution were added to hydrate the lipid film. 
The carvacrol-loaded invasome (CLI) formulation was de-
veloped, sonicated, and kept at 4 °C.

Bacterial isolates used in the study 
Five types of gram-negative bacteria, including E. coli, 

P. aeruginosa, S. Enteritidis, S. Typhimurium, and Klebsiella 
oxytoca, were found in naturally infected chicken. These 
chicken isolates affected 10,000 birds aged 1-21 days and 
were collected from ten broiler flocks between 2020 
and 2021. The samples were examined for the presence 
of pathogenic bacteria that cause conjunctivitis, arthritis, 
enteritis, and diarrhea. The isolates were identified and 
serotyped according to Quinn et al. (2011). Stock cultures 
of these bacteria were grown on Mueller-Hinton agar at 
37 °C for 24 h for subsequent bioassays. Antimicrobial sus-
ceptibility testing and determination of multi-drug resis-
tance index (MDRI).

All bacterial isolates were tested for sensitivity to 12 differ-
ent antimicrobial agents using the Kirby-Bauer disc diffusion 
method on Mueller-Hinton Agar (Oxoid Ltd., Basingstoke, 
UK), according to the CLSI guidelines (2018). Resistance to 
three or more antibiotics from different groups represents 
multidrug resistance (MDR). Individual isolates’ MDR index 
(MDRI) was calculated by dividing the number of antimicro-
bials to which the isolate was resistant by the total number 
of antibiotics to which the isolate had been exposed (Chan-
dran et al., 2008). Isolates with MDRI values greater than 0.2 
or 20% were considered highly resistant.

MDR index =

Number of antibiotics 
resisted

X 100
Total number of 
antibiotics used
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Determination of the effect of CV and CLI on bacterial 
pathogen growth using the agar diffusion method. Different 
concentrations of pure carvacrol and CLI (10, 5, 2.5, 1.25, 
0.625, 0.313, 0.156, and 0.078 µl/ml) were prepared by 
diluting with 1% DMSO. The antibacterial activity of the 
prepared concentrations was tested against MDR isolates 
as described by Jeff-Agboola et al. (2012). Briefly, bacteria 
were cultivated on tryptone soya agar at 37 ºC for 24 h 
before being suspended in physiological saline (0.9% NaCl) 
and adjusted to 0.5×108 CFU. Muller-Hinton agar was pre-
pared and autoclaved at 121 ºC for 15 min. before being 
maintained at 55 ºC.  The tested oils were then combined 
with TSA according to the tested concentrations. The oil-
agar medium (10 ml) was then solidified in sterilized Petri 
dishes. Equal volumes of bacterial suspensions were in-
oculated and spread on agar plates. The plates were then 
incubated at 37 ºC for 24-48h. The cells were examined for 
bacterial colony growth inhibition.

Housefly 
Adult houseflies captured in the field using a sweep net 

were reared in insect-rearing cages on a diet of milk pow-
der and wheat bran, as described by Kumar et al. (2011). 
Hatched larvae were transferred to a 25 × 18.5 cm2 plastic 
basin with a larval feed (wheat bran) that was changed daily 
until the larvae reached the pupal stage.

Larval bioassays. For the larval bioassay, different con-
centrations (5, 2.5, 1.25, 0.625, 0.312, 0.156, and 0.078%) of 
carvacrol and CLI were prepared by dilution with acetone. 
The prepared concentrations were poured on a filter paper 
disc (in a 9.0 cm Petri plate) together with larval feed (Ku-
mar et al., 2011). Acetone-treated filter paper was used as 
the control. Acetone was evaporated from the treated fil-
ter paper by air-drying at ambient temperature for 5 min. 
Twenty larvae (second instars, with larval diet) were then 
transferred to treated air-dried filter paper. Petri dishes 
containing these filter papers were incubated at 28 ± 2 °C 
and 75 ± 5% relative humidity (RH). The mortality of the 

treated larvae was recorded daily for four days. This bio-
assay was performed in triplicates for each concentration.

Pupal bioassays. Different concentrations of carvacrol 
and CLI (5, 2.5, 1.25, 0.625, 0.312, 0.156, and 0.078%) were 
prepared for pupal assays by dilution with acetone. The 
produced concentrations were poured onto a filter paper 
disc (in a 9.0 cm Petri dish), and the acetone was removed 
by air drying for 5 min. Twenty pupae (2-3 days old) were 
placed on the filter papers and monitored for adult emer-
gence for six days. Acetone-treated filter paper was used 
as a control. This bioassay was performed in triplicates 
for each concentration. The adult inhibition rate was cal-
culated according to the method described by Kumar et 
al. (2011). Percentage inhibition rate (PIR) was calculated 
as:                          where Cn is the number of newly 
emerged houseflies in the control and Tn is the number of 
newly emerged houseflies in the treatment.

Statistics 
The results of the different treatments were statistically 

analyzed using IBM SPSS for Windows version 22 (IBM, Ar-
monk, NY, USA). Analysis of variance (ANOVA) was used 
to investigate the differences between treatments, and 
Duncan’s test was used to estimate the mean differences 
(α = 0.05). The lethal concentrations as well as the 50% 
and 90% mortality rates were calculated using SPSS v.22.

RESULTS

Antimicrobial Susceptibility Profiles
All the tested isolates were multidrug resistant, as their 

MDR indices were more than 20%. S. Enteritidis, S. Typh-
imurium exhibited resistance for 9/12 antibiotics (Table 1). 
However, E. coli was sensitive to imipenem and highly re-
sistant to other antibiotics (Table 1). K. oxytoka was highly 
sensitive to chloramphenicol, nalidixic acid, and ampicillin. 
Also P. aeruginosa showed high resistance against all used 
antimicrobials except impenem (Table 1).

PIR = Cn-Tn x 100Cn

Table 1.
Antimicrobial susceptibility profiles of the study isolates.

S. Entritidis S. Typhimurium E. coli K. oxytoca P. aeruginosa

Diameter of inhibition haloes for each bacterial strain against antimicrobial agent

ATM R 
14mm

R 
0mm

R 
4mm

R 
12mm

R 
0mm

IPM I 
20mm

R 
0mm

S 
28mm

I 
20mm

S 
22mm

CTX R 
0mm

R 
0mm

R 
0mm

R 
0mm

R 
0

AM R 
0mm

S 
18mm

R 
0mm

S 
22mm

I 
12

OT R 
0mm

R 
0mm

R 
0mm

R 
6mm

R 
6

http://www.ajvs.cl
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ATM (Aztreonam), IPM (Impenem), CTX (Cefotaxime), AM (Ampicillin), OT (Oxytetracycline), DO (Doxycycline), C (Chloram-
phenicol), S (Streptomycin), K (Kanamycin), NA (Nalidixic acid), OF (Ofloxacin) CIP (Ciprofloxacin). All the bacterial isolates 
were evaluated for antimicrobial sensitivity to 12 different antimicrobial agents using the Kirby-Bauer disc diffusion method 
on Mueller-Hinton Agar (Oxoid Ltd., Basingstoke, UK) according to the guidelines of CLSI (2017).

S. Entritidis S. Typhimurium E. coli K. oxytoca P. aeruginosa

Diameter of inhibition haloes for each bacterial strain against antimicrobial agent

DO R 
2mm

R 
6mm

R 
2mm

R 
0mm

R 
4

C S 
24mm

R 
0mm

R 
0mm

S 
42mm

R 
9

S R 
2mm

R 
0mm

R 
4mm

R 
2mm

R 
6

K R 
8mm

R 
10mm

R 
10mm

R 
8mm

I 
14

NA I 
12mm

R 
0mm

R 
10mm

S 
26mm

R 
8mm

OF R 
6mm

R 
0mm

R 
6mm

R 
2mm

R 
10mm

CIP R 
10mm

R 
0mm

R 
10mm

R 
6mm

R 
8mm

Table 1 continuation

Activity of CLI against multidrug resistance bacterial 
certain isolates

The antimicrobial activity of carvacrol and CLI against 
E. coli, S. Enteritidis, S. Typhimurium, P. aeruginosa, and 
K. oxytoka was evaluated by determining the inhibitory 
activity using the agar dilution method. The high concen-
trations (10, 5, 2.5, 1.25, and 0.625 µl/ml) both of carvacrol 
and CLI inhibited the growth of all tested organisms. At a 
concentration of 0.156 µl/ml, CLI inhibited the growth of 
all isolates, except S. Typhimurium and P. aerogenosa. How-
ever, carvacrol inhibited only the growth of K. oxytoka, 
whereas the other isolates grew. Meanwhile, at a low con-
centration (0.078 µl/ml), all isolates grew (Table 2). K. oxy-
toka was similarly inhibited by CLI and carvacrol at various 
concentrations. In addition, even at low concentrations, 
CLI inhibited E. coli and S. Enteritidis when compared with 
free carvacrol at doubled concentrations (Table 2). 

Larvicidal effects of CLI against housefly larvae 
CLI exhibited significant toxicity to house fly larvae, 

with 100% mortality attained at a concentration of 3.82  
µl/ml while pure carvacrol achieved the same result at a 
concentration of 4.28  µl/ml. Also, the LC50 for pure car-
vacrol was 2.54 µl/ml and 2.19 µl/ml for CLI. (Table 3).

Pupicidal inhibition activity of CLI against housefly pu-
pae

CLI and the pure carvacrol caused 100% inhibition rate 
at the concentration of 50 µl/ml against pupae with LC50 
attained at concentrations of 12.10 µl/ml and 13.20 µl/ml, 
respectively (Table 4).

DISCUSSION 
Bacterial infections commonly cause morbidity and 

mortality in humans and animals globally (WHO, 2010), 
and can even cause food deterioration (Srinivasa & Tha-
ranathan, 2007). The main strategy for managing these 
bacterial infections is the use of antibiotics (Zaffiri et al., 
2012). However, improper use of these chemicals has 
contributed to the development and spread of multidrug 
resistant pathogens (English & Gaur, 2010). As a result, 
antibiotic-resistant organisms pose a significant threat to 
animal and public health. Therefore, it is critical to conduct 
research and develop novel chemicals with antibacterial 
properties that do not harm animal or human cells (Ling 
et al., 2015). Essential oils and their constituent small mol-
ecules offer a good alternative therapeutic option for mi-
crobial diseases (Basri et al., 2014; Raut & Karuppayil, 2014).

Musca domestica is a mechanical vector of more than 100 
pathogens (bacteria, fungi, viruses, and parasites), some of 
which cause severe diseases in humans and domestic ani-
mals. Chemical pesticides, particularly pyrethroids, are fre-
quently used to control houseflies (Shah et al., 2015). Un-
fortunately, resistant pyrethroid houseflies have emerged. 
Furthermore, chemical insecticides are hazardous to the 
environment, domestic animals, and humans (Scott et al., 
2013). Therefore, it is necessary to develop new materials 
that use biodegradable and target-specific insecticides to 
control flies in a manner that is safe for animals, humans, 
and the environment. 

Several studies have shown that essential oils are effec-
tive in controlling houseflies (Chauhan et al., 2016; Benelli 
et al., 2018; Pavela et al., 2018). The antibacterial and an-
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+ means inhibition of bacterial growth 
- means growth of bacteria 

(*) Significant for negative control

Isolates Concentrations S. Entritidis S. Typhimurium E. coli K. oxytoca P. aeruginosa

Inhibition of bacterial growth

Carvacrol 10 µl/ml + + + + +

CLI 10 µl/ml + + + + +

Carvacrol 5 µl/ml + + + + +

CLI  5 µl/ml + + + + +

Carvacrol 2.5 µl/ml + + + + +

CLI 2.5 µl/ml + + + + +

Carvacrol 1.25 µl/ml + + + + +

CLI 1.25 µl/ml + + + + +

Carvacrol 0.625 µl/ml + + + + +

CLI 0.625 µl/ml + + + + +

Carvacrol 0.313 µl/ml - + - + -

CLI 0.313 µl/ml + + + + +

Carvacrol 0.156 µl/ml - - _ + -

CLI 0.156 µl/ml + - + + -

Carvacrol 0.078 µl/ml - - - - -

CLI 0.078 µl/ml - - - - -

Table 2.
Antibacterial activity of carvacrol and carvacrol-loaded invasomes (CLI).

Table 3.
Larvicidal activity of pure carvacrol and Carvacrol-loaded invasomes against house fly larvae. 

Concentrations
µl/ml

Carvacrol Larval Mortality percentage Carvacrol-loaded invasomes
Larval Mortality percentage

50 µl/ml 100 ± 0.00* 100 ± 0.00*

25 µl/ml 100 ± 0.00* 100 ± 0.00*

12.50 µl/ml 100 ± 0.00* 100 ± 0.00*

6.25 µl/ml 100 ± 0.00* 100 ± 0.00*

3.125 µl/ml 63.0 ± 5.70* 74.0 ± 4.18*

1.56 µl/ml 26.0 ± 4.18* 33.0 ± 2.74*

0.78 µl/ml 14.0 ± 4.18 19.0 ± 4.18*

LC50 2.54 µl/ml 2.19 µl/ml

LC90 4.28 µl/ml 3.82 µl/ml

Acetone (Negative control) 2.00 ± 2.74 2.00 ± 2.74

Deltamethrin 2 ml/l 12.0 ± 2.74 12.0 ± 2.74

http://www.ajvs.cl


30

Yehia, et al. (2024) austral J Vet sci 56, 25-33

austral Journal of VeterinarY science

tioxidant properties of monoterpenoids, such as carvacrol, 
make them an excellent alternative to commercially avail-
able chemical compounds for pest control and regular bac-
tericides (Didry et al., 1994; Undeger et al., 2009). Carvacrol 
has been shown to be acutely toxic to a variety of inverte-
brate pests, including insects, flies, and mosquitoes (Cetin 
et al., 2009; Dolan et al., 2009; Lei et al., 2010), anti-parasitic 
(Force et al., 2000), and to cause little harm to mammals, 
fish, and other non-target organisms, while also biodegrad-
ing or disintegrating efficiently in the environment (Aboel-
hadid et al., 2013; Sinthusiri & Soonwera, 2014).

In the current study, carvacrol-loaded invasomes (CLI) 
were prepared and compared to pure carvacrol against 
isolates of E. coli, S. enterica Enteritidis, S. enterica Typh-
imurium, and P. aeruginosa that were multidrug resistant, 
as well as against housefly resistant to insecticides. 

The results showed that at a concentration of 0.625 µl/
ml and more carvacrol and CLI, stopped the growth of all 
organisms examined. CLI inhibited the growth of only E. 
coli and S. enterica Enteritidis at a dose of 0.156 µl/ml or 
less, but pure carvacrol had no impact even at a two-fold 
concentration. Similarly, Bnyan et al. (2014) determined 
the antibacterial activity of carvacrol against Staphylococcus 
aureus, Staphylococcus epidermidis, Streptococcus pneumoni-
ae, Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, 
Pseudomonas aeruginosa, Enterobacter spp., and Serratia spp., 
and the results revealed that all examined bacterial isolates 
showed significant growth inhibition at different concentra-

tions, except Pseudomonas aeruginosa. Also, Burt et al. (2007) 
found that carvacrol is efficient at inhibiting the growth of 
S. enterica serotype Enteritidis on agar as well as eliminating 
these bacteria from raw chicken surface. 

Kamimura et al. (2014) found that carvacrol inclusion 
complexes with hydroxypropyl-beta-cyclodextrin (HPB-
CD) had stronger antibacterial activity against Escherichia 
coli K12 and Salmonella enterica serovar Typhimurium LT2 
than pure carvacrol. In addition, Persico et al. (2009) dis-
covered significant antibacterial activity of nanocompos-
ite films based on low-density polyethylene containing 
carvacrol compared to pure carvacrol. Similarly, Liu et al. 
(2022) prepared a carvacrol nanoemulsion to overcome 
the instability and water insolubility of commercial carvac-
rol and then tested its antibacterial activity. 

These findings suggest that CLI disrupted the structure 
and permeability of bacterial cells, allowing them to per-
meate the contents of the bacterial cells and, as a result, 
greatly outperform commercial carvacrol in terms of anti-
bacterial activity. The antibacterial properties of carvacrol 
have been attributed to its ability to alter bacterial mem-
brane permeability and trigger the leakage of potassium, 
phosphate, and protons (Lambert et al., 2001).

Carvacrol and CLI showed significant larval Musca mor-
tality even at low concentrations with LC50 reached at con-
centrations of 2.54 and 2.19 µl/ml, respectively, both also 
showed a significant PIR at low concentration (3.125 µl/
ml). Similarly, Xie et al. (2019) assessed the insecticidal ac-

(*) Significant for negative control

Table 4.
Pupicidal activity of pure carvacrol and Carvacrol-loaded invasomes against house fly pupae.

Concentrations
µl/ml

Percentage inhibition rate (PIR) of 
carvacrol

Percentage inhibition rate (PIR) of 
carvacrol-loaded invasomes

50 µl/ml 100 ± 0.00* 100 ± 0.00*

25 µl/ml 82.5 ± 4.92* 90.3 ± 4.30*

12.50 µl/ml 54.3 ± 6.34* 53.2 ± 5.25*

6.25 µl/ml 40.2 ± 5.69* 40.2 ± 4.12*

3.125 µl/ml 22.8 ± 2.80* 23.9 ± 2.94*

1.56 µl/ml 2.16 ± 2.96 3.33 ± 3.03

0.78 µl/ml 0.00 ± 0.00 0.00 ± 0.00

LC50 12.2 12.1

LC90 24.9 22.3

Acetone (Negative control) 0.00 ± 0.00 0.00 ± 0.00

Deltamethrin 2 ml/l 0.00 ± 0.00 0.00 ± 0.00
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tivity of carvacrol against the housefly (M. domestica) and 
found considerable toxicity with an LC50 attained at con-
centration of 0.03 µl/l for contact toxicity and 2.78 µl/l for 
fumigation toxicity. Also, carvacrol showed a percentage 
inhibition rate (PIR) of 29.5% at concentration of 0.025 µl/l 
and 81.8% at concentration of 1.25 µl/l for the contact tox-
icity and fumigation assay, respectively (Xie et al., 2019).

The insecticidal activity of carvacrol can be explained by 
a number of mechanisms, including binding to the nico-
tinic acetylcholine receptor found in the housefly central 
nervous system (Itier & Bertrand, 2001; Jeschke & Nauen, 
2008), targeting the gamma-aminobutyric acid receptor 
(Garcia et al., 2006), an octopamine receptor (Gross, 2010), 
and a tyramine receptor (Enan, 2005), and inhibition of 
acetylcholinesterase (Anderson & Coats, 2012). Tong et al. 
(2013) used [14C]-Nicotine binding assays with M. domes-
tica nicotinic acetylcholine receptors (nAChRs) to explain 
the mode of action of carvacrol against M. domestica and 
they discovered that carvacrol binds to housefly nAChRs 
at a different binding site than nicotine and acetylcholine, 
which may support the idea that carvacrol’s insecticidal 
effect involves nAChRs as a potential target. 

CLI achieved better antibacterial and insecticidal activ-
ities than pure carvacrol, which can be attributed to the 
invasome formulation, which increased the penetration 
capacity of the loaded carvacrol. This was supported by 
the HPLC data, which showed that ticks treated with the 
CLI formulation had a significantly (p < 0.001) higher pen-
etration than carvacrol by 3.86 folds (Gamal et al., 2023). 
The combination of ethanol and terpene in the invasomal 
bilayer breaks down hydrogen bonds between ceramides 
in the insect cuticle, increasing the space available for me-
dicinal assimilation (Ahmed et al., 2019; Ahad et al., 2011). 

We were limited by the use of invasomes without car-
vacrol as a control. The invasomes were prepared in a 10 
ml organic solution of chloroform and methanol (3:1), 
in which carvacrol (10 mg), cineole (1% v/v), cholesterol 
(0.15% w/w), and phospholipid (3% w/w) were dissolved. 
Except for carvacrol, all ingredients were added at a range 
of 1%, which had little effect as an insecticide or antibacte-
rial agent. Moo et al. (2021) found that 1,8-cineol possessed 
bactericidal effect against carbapenemase-producing Kleb-
siella pneumoniae (KPC-KP) at 28.83 mg/ml. Furthermore, 
cineole has been shown to be toxic to Musca domestica at 
concentrations of 4 µl/l (Rossi & Palacios, 2015). The ef-
fective concentration of CLI against larvae was 6.25 µl/ml 
and that against pupae was 50 µl/ml. This implies that the 
concentration of cineol used to prepare the CLI was high-
er than that reported by Rossi & Palacios (2015).  This in-
dicates that cineol had no discernible impact on the study.  
As a result, we did not use individual invasome compo-
nents as controls.

In conclusion, the carvacrol-loaded invesomes demon-
strated significant antibacterial activity, particularly against 
MDR isolates, as well as insecticide activity against their 
mechanically transmitted vector, the housefly.
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