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Humboldt penguins (Spheniscus humboldti)
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ABSTRACT. Samples of bones (humerus) and claws of adult Humboldt penguins (Spheniscus humboldti) were 
opportunistically obtained from twenty-seven carcasses at two important nesting sites in northern Chile: Chañaral 
Island (CHI) and Pan de Azúcar Island (PAI). The concentrations of trace elements (Cu, Zn, Pb, Ni, Fe, Se, As, Br, Mn 
and Cr) were determined by X-ray fluorescence. The highest levels (mean ± standard deviation, µg/g dry weight) of Cu 
(26.57 ± 4.08), Zn (163.9 ± 42.7), Pb (1.86 ± 1.53), Ni (0.31 ± 0.03), Se (7.70 ± 4.87) and Cr (0.25 ± 0.24) were detected 
in bones, whereas the highest levels of Fe (3,162 ± 1,579), As (6.75 ± 4.21), Br (0.12 ± 0.06) and Mn (76.7 ± 47.9) were 
found in claws. In bones, Se and Ni levels were higher (P < 0.05) in CHI than in PAI. In claws, the contents of Pb, Fe, and 
Mn were higher at CHI than those at PAI, whereas only As exhibited higher contents at PAI than those found at CHI. 
The trace element content in the claws and bones found herein may be the result of either acute or chronic exposure 
to penguins, respectively. These findings may serve as a baseline for further studies to design adequate and opportune 
plans to protect this vulnerable species.
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INTRODUCTION

The Humboldt penguin (Spheniscus humboldti) naturally 
resides along the Pacific coast of South America, from Perú 
to Chile (De la Puente et al., 2013), with 23,800 mature in-
dividuals. In Chile, this species inhabits between Arica and 
Chiloé in colonies that are mostly concentrated between 
21°S and 34°S (Wallace & Araya, 2015), with a population 
that ranged from 40,000 to 47,000 in the past (Schlosser 
et al., 2009), and has shown a remarkable decline, with a 
population of less than 5,000 pairs, where the presence of 
polluting waste is mentioned among the greatest threats to 
the species (Simeone et al., 2018).

Because it is a species classified as vulnerable by the 
IUCN Red List of Threatened Species in 2020 (https://www.
iucnredlist.org), it is extremely difficult to obtain samples 
such as blood or internal organs, which are considered in-
vasive to birds. Studies focusing on the assessment of metal 
contamination in the bones and claws of penguins remain 
quite limited because these birds are protected by law, and 
thus, these samples can only be obtained in cases where 
opportunistically dead bodies are available. 

Trace elements can have toxic effects on living organisms 
(Rodríguez & Mandalunis, 2018). Heavy metals can occur 
naturally (e.g. volcans) at low levels in the environment, and 
in larger amounts, they can impact health (Newman, 2015). 
The occurrence of trace elements in aquatic ecosystems is 

mainly due to anthropogenic activities such as antifouling 
coatings, sewage discharge, waste incineration, coal com-
bustion, oil spills, pipe corrosion, and solid waste dispos-
al (Bargagli, 2000; Caccia et al., 2003; Duruibe et al., 2007; 
Zhang & Ma, 2011). In northern Chile, the massive develop-
ment of mining activities has had a detrimental effect on 
coastal ecosystems due to elevated metal concentrations 
(Ramirez et al., 2005; Stauber et al., 2005). Numerous indus-
tries (e.g., mining, fishing, seaports) and cities (e.g., Arica, 
Iquique, Antofagasta, Chañaral) in northern Chile discharge 
waste materials into the sea, leading to increased levels of 
certain metals that are considered hazardous to ecosystem 
health and biota (Vermeer & Castilla, 1991; Cortés & Lu-
na-Jorquera, 2011).

Metal (loids) such as Pb, Cu, Fe, Mn, As, Ni and Zn may be 
sequestered in bones, which become a concern in animal´s 
health as these metals can interfere with calcium homeosta-
sis, inhibit bone-forming cells (osteoblasts), stimulate bone 
absorption cells (osteoclasts) and alter the mineralization 
process. This can lead to decreased bone density, increased 
risk of fractures and impaired skeletal development in 
growing animals (Newman, 2015; Rodríguez & Mandalunis, 
2018; Ciosek et al., 2023). Non-essential elements (e.g., Pb, 
Cd, Ag, Ti, and As) are extremely toxic with no biological 
functions, whereas essential elements (e.g., Cu, Fe, Cr, Se, 
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Br, Ni, Zn and Mn) are required in very small amounts be-
cause they perform vital functions for the maintenance of 
animal life (McCall et al., 2014; Nordberg & Nordberg, 2016). 
Some metals (e.g. Pb, Cu, Cr, Ni, and Zn) and metalloids 
(e.g. As) can induce severe adverse effects in birds, even an 
increase in the mortality rate (Newman, 2015). Common-
ly, Zn accumulation in birds has been linked to binding to 
metallothionein, but it can also accumulate in the muscles 
and bones (Wastney et al., 2000). Some less-known metals, 
such as Mn, can accumulate in the bone, cartilage, and tis-
sues that are dense with mitochondria, and overexposure 
to Mn can cause serious health problems in birds (Sarnows-
ki & Kellam, 2023). At high concentrations in biota, Ni is 
both toxic and carcinogenic (Newman, 2015), and wild birds 
from polluted environments can accumulate in bone higher 
Ni concentrations than other internal tissues (Outridge & 
Scheuhammer, 1993). Adverse effects of Se (a non-metal) 
in wild aquatic birds have been linked to pollution of the 
aquatic environment by anthropogenic activities, including 
impaired reproduction, reduced growth, histopathological 
lesions, among others (Hoffman, 2002). There is no avail-
able data on the non-metal Br levels in avian wildlife, but 
some evidence indicates that Br can alter the metabolism 
of rats and broilers with subsequent deleterious effects (Du 
Toit & Casey, 2010; Pavelka, 2004).

Human nails have been shown to be valuable biomarkers 
for heavy metal exposure, providing insight into long-term 
exposure due to their slow and continuous growth (Suku-
mar & Subramanian, 2007). Other studies have revealed 
that elements such as As, Cd, Hg and Pb accumulate in nails, 
reflecting both environmental and dietary exposure (Gual-
lar et al., 2002; Shokoohi et al., 2022). In birds, claws are 
similar to human nails, making them a useful bioindicator of 
heavy metal contamination. Mercury (Hg) concentrations in 
the talons of bald eagles (Haliaeetus leucocephalus) correlat-
ed significantly with levels in other tissues, suggesting that 
talons may serve as a non-lethal alternative for contaminant 
monitoring (Hopkins et al., 2007).

Despite the potential risks posed by metal contamina-
tion to seabirds, to the best of our knowledge, no studies 
have been conducted on bones or claws of Humboldt pen-
guins. Consequently, the primary goals of this study were to 
evaluate, for the first time, the concentrations of selected 
trace elements in adult Humboldt penguins and to com-
pare these levels with those in the existing literature. By 
acquainting these objectives, this work contributes to filling 
a gap in trace element accumulation in the claw and bone 
of Humboldt penguins, adding light to the potential risks to 
this vulnerable species and their habitats.  

MATERIALS AND METHODS

Bone and claw samples of Humboldt penguin carcasses 
were collected opportunistically from Pan de Azucar and 
Chañaral Islands (Figure S1, Supplementary material). Pan 
de Azúcar Island, situated 1km away from the coastline is a 

site on the northern coast of Chile highly impacted by min-
ing activities (Celis et al., 2014), whereas Chañaral Island is 
an isolated place, with little anthropogenic influence, 7 km 
away from the coastline and 100 km north of Coquimbo Bay. 
Both islands are important sites where Humboldt penguins 
nest. Bone (left femur) and claw samples of adult Humboldt 
penguin carcasses were carefully and opportunistically col-
lected in December 2015 (nesting period of the species). 
Disposable plastic gloves were used for handling and stor-
ing samples. The bones (n=27) and claws (n=27) were col-
lected from multiple individuals across the penguin colo-
nies, as it was not feasible to assess metal contamination in 
each individual separately, but rather as a collection of that 
species. To maintain sample integrity, clean plastic contain-
ers and sealed plastic bags (Ziploc®) were used, where each 
sample was stored separately to avoid cross-contamination 
between samples.

First, the bones and claws were cleaned with alcohol 
swabs to ensure the removal of any external contamina-
tion (Mateo-Lomba et al., 2022). After cleaning, the samples 
were thoroughly rinsed (Milli-Q water) and left to dry at 
room temperature before element analysis.

Recently, low-cost X-ray fluorescence (XRF) has been 
used in wildlife and ecotoxicological studies with promisso-
ry results (Specht et al., 2019; Hampton et al., 2021; Celis et 
al., 2022). Thus, a portable XRF Niton XL3t GOLDD+ (Ther-
mo-Fisher Scientific, Omaha, USA) was used to determine 
the burden of chemical elements in the samples. The blank 
was a certified 99.99% silicon dioxide (SiO2) analysed for 
every 20 samples. Precision and accuracy were verified us-
ing international reference standards Rare Earth Ore “CGL 
124” (USZ-42 Mongolia Central Geological Laboratory), 
with precision > 98 % and accuracy within 95–99 %. The 
QA/QC  detection limits (µg/g) were as follows: 1.43 for Cu, 
8.72 for Zn, 0.26 for Pb, 0.07 for Ni, 23.52 for Fe, 0.39 for 
Se, 9.27 for As, 0.07 for Br, 0.04 for Mn and 0.16 for Cr. The 
uncertainty of the measurements (µg/g) were for bones as 
follows: Cu (1.08 ± 0.35), Zn (9.37 ± 3.01), Pb (1.47 ± 1.30), Ni 
(0.06 ± 0.01), Fe (105.96 ± 356.71), Se (4.15 ± 8.08), As (6.82 
± 5.28), Br (0.0024 ± 0.0014), Mn (0.13 ± 256.71) and Cr (0.43 
± 0.42); for claws were Cu (0.84 ± 0.10), Zn (6.08 ± 3.98), Pb 
(0.40 ± 0.38), Ni (0.04 ± 0.01), Fe (34.38 ± 36.52), Se (2.09 ± 
6.23), As (9.12 ± 6.44), Br (0.004 ± 0.002), Mn (0.07 ± 0.11)  
and Cr (0.15 ± 0.10).

Nonparametric statistical methodologies were employed 
because the data did not meet the assumptions of normal-
ity and homoscedasticity even after applying a log transfor-
mation. The differences among the element levels were de-
termined using Kruskal-Wallis analysis. Post hoc tests were 
conducted with critical differences in the mean rank. To 
estimate the relationship between the trace element con-
centrations in the bones and claws, ordinary least squares 
regression was used. The uncertainty value (σ) for the por-
table XRF was determined using the following equation: σ = 
(C/NET) (BGK/t)0.5, where C represents the element concen-
tration, BKG is the estimated background count obtained 
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through fitting, t is the measurement time, and NET is the 
net element count derived from the Gaussian function in 
the fitting process (Zhang et al., 2021). For bones and claws, 
Spearman rank correlation coefficients were calculated to 
determine the relationship between the trace element lev-
els in bones and claws. Statistical significance was set at P < 
0.05. The data were analysed (t-Student) using SPSS 27.0.

RESULTS AND DISCUSSION

Information on the levels of trace elements in Humboldt 
penguins is fragmentary; only a few studies have focused on 
the bones of penguins worldwide, whereas no studies have 
been conducted on penguin claws (Espejo et al., 2017). The 
concentrations of Cu, Zn, Pb, Ni, Fe, Se, As, Br, Mn and Cr 
are shown in Table 1, which were detected in both matri-
ces and locations studied. The highest levels of Cu, Zn, Pb, 
Ni, Se and Cr were detected in bones, whereas the highest 
contents of Fe, As, Br and Mn were found in claws. The 
highest mean concentrations detected corresponded to Fe 
(3,162.2 µg/g) at Chañaral Island (CHI), whereas Br exhibited 
the lowest levels (0.05 µg/g) at Pan de Azúcar Island (PAI). 
In bones, the levels of Se and Ni were significantly higher at 
CHI than those levels found at PAI, whereas Cu, Zn, Pb, Fe, 
As, Br, Mn and Cr contents showed no statistical differenc-
es. In the claws, the levels of Pb, Fe, and Mn were higher in 
CHI than in PAI (P < 0.05), whereas As values were not (P < 
0.05, Table 1).  

At PAI the levels of Zn, Pb and Mn in the bones were 
higher than those levels found in the claws, while As and Br 
contents showed the opposite (P < 0.05). At CHI, the con-
centrations of Cu, Ni and Se found in the bones were statis-
tically higher than those detected in the claws, but Fe levels 

were higher in claws than in bones (P < 0.05). These findings 
in bones and claws of this species from the two studied 
geographical areas may be linked to different anthropogen-
ic sources, since Pan de Azúcar Island presents major hu-
man activities (e.g. mining, industries) than Chañaral Island 
(Celis et al., 2014).   

Significant relationships were found between the con-
centrations of the trace elements (Figure 1). In both bone 
and claw samples, a positive correlation was noted between 
Cu-Zn, Cu-Ni, Cu-As, Zn-Se, Fe-Mn, Fe-Cr, Se-As and Mn-
Cr (P < 0.05). Only in bones was a significant positive cor-
relation noted for Cu, Zn, and Ni with Cr, and for Ni with 
Pb, Fe, and Mn. Similar findings were noted for Se with Cu, 
Pb, Ni, Zn-As, and As with Cu in the claws (Figure 1). Simi-
larly, Squadrone et al. (2018) observed a positive correlation 
between Cu-Ni and Fe-Cr in feathers of African penguins 
(Spheniscus demersus). Another study by Celis et al. (2015) 
reported a significant positive correlation between Cu-As, 
Zn-As and Cu-Zn in excreta of Adélie penguins (Pygoscelis 
adeliae) from Antarctica. Probably, the positive correlations 
indicate that the elements for all the study colonies are of 
the same source. On the other hand, negative correlations 
(P < 0.05) were found between Cu-Br, Ni-Br, Fe-Se, As-Mn 
and Se-Mn, in both bones and claws. 

The contents of As, Cu, Pb, Mn, Se and Cr in the bones 
found herein are higher, the Ni contents are lower, while 
the Zn levels are within the range of those levels detected in 
bones of penguins of the genus Pygoscelis from different lo-
cations of Antarctica (Table S1, Supplementary material). The 
comparison with others aquatic birds revealed that our Ni 
and Pb levels in bones are lower than Ni (10.5-36.1 µg/g dw) 
and Pb (32.4-59 µg/g dw) levels, whereas our Cu levels are 
higher than Cu (4-8.2 µg/g dw) levels reported by van Eeden 

Bones Claws

PAI CHI PAI CHI

Cu 23.17 ± 6.80 a 26.57 ± 4.08 a * 21.50 ± 5.76 a 17.18 ± 2.23 a **

Zn 163.9 ± 42.7 a * 159.0 ± 26.7 a 128.3 ± 69.9 a ** 130.6 ± 72.1 a 

Pb 1.86 ± 1.53 a * 1.64 ± 0.42 a 0.49 ± 0.39 a ** 1.23 ± 0.62 b

Ni 0.27 ± 0.03 a 0.31 ± 0.03 b * 0.22 ± 0.04 a 0.26 ± 0.03 a **

Fe 2,247.1 ± 2,281.6 a 1,272.3 ± 566.1 a * 1,361.8 ± 1,037.3 a 3,162.2 ± 1,579.1 b **

Se 1.95 ± 5.05 a 7.70 ± 4.87 b * 2.53 ± 5.5 a 0.38 ± 3.05 a **

As 3.53 ± 3.01 a * 4.33 ± 1.31 a 6.75 ± 4.21 a ** 1.98 ± 1.83 b

Br 0.05 ± 0.03 a * 0.08 ± 0.05 a 0.12 ± 0.06 a ** 0.09 ± 0.04 a

Mn 45.1 ± 53.4 a * 30.57 ± 14.93 a 19.86 ± 32.35 a ** 76.7 ± 47.9 b

Cr 0.25 ± 0.24 a 0.23 ± 0.06 a 0.14 ± 0.08 a 0.24 ± 0.11 a

Table 1.
Concentrations of chemical elements (µg/g, d.w) in bones and claws of Humboldt penguins sampled at nesting sites from Pan de Azúcar 
Island (PAI, n=23) and Chañaral Island (CHI, n=4). 

Data are shown as mean ± standard deviation. Different letters between collecting sites for the same biological matrix indicate significance 
at P < 0.05. Differences between bones and claws for the same location are indicated with an asterisk (P < 0.05).
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and Schoonbee (1996) in bird bones from a metal-polluted 
wetland in South Africa. Our mean Fe levels in bones were 
79.4 times higher than the mean Fe levels measured in the 
bone (tarsometatarsus) of diving ducks (Aythya ferina) from 
the Baltic Sea (Kalisinska et al., 2007). The higher As, Cu, 
Pb, Mn, Se and Cr concentrations in bones detected here-
in could be explained by the major copper-mining activi-
ties occurring in northern Chile (Vermeer & Castilla, 1991; 
Ramírez et al., 2005; Cortés & Luna-Jorquera, 2011), where 
the nesting sites focus of this study are located. 

Pollutants in bones accumulate during the lifetime of the 
organism; therefore, metals in Humboldt penguin bones 
may be considered an indicator of long-term exposure, 
as stated by Barbosa et al. (2013) in Antarctic penguins. 
Our Pb levels are < 10 µg/g dw, a threshold known to be 
toxic to birds (Scheuhammer, 1987), which suggests very 
small biological effects in the Humboldt penguin. Howev-
er, there was a difference between Pb levels in penguins 
from Chañaral Island (a colony with almost no contact with 

humans) and penguins from Pan de Azúcar Island (a site 
with mining and human presence), possibly due to the indi-
rect effects of human impact on Humboldt penguins. Metal 
(loid) intoxication has a negative impact on human health, 
as long/short term exposure to high Zn, As, Cu, Cr, Pb, Ni, 
and Fe concentrations alters the bone remodelling process, 
leading to the development of different bone pathologies 
(Rodríguez & Mandalunis, 2018). Chronic exposure to met-
als may pose a threat to penguins (Espejo et al., 2017a) and 
humans (Newman, 2015). When an organism is exposed to 
metal contamination, claws tend to accumulate trace el-
ements from six months to 1.5 years, whereas bones are 
more representative in terms of years or even decades of 
exposure (Rabinowitz, 1991; Gutiérrez-González et al., 2019). 
The accumulation of metal (loids) in the bone, although 
not causing any problems, can trigger the reappearance of 
chronic toxicity by mobilisation of these elements in the 
body (Silbergeld et al., 1988). The data on bones and claws 
found herein can be useful for future research to deter-

Figure 1.
Correlation matrix among the concentrations of selected trace elements. 
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mine if there are differences in the temporality of exposure 
and accumulation dynamics. Trends observed in claws and 
bones over time would result from either acute or chron-
ic exposure to penguins, respectively, an issue that needs 
more attention.

Studies on trace metals in vertebrate animals are useful 
for extrapolating their potential effects in humans (New-
man, 2015). It is estimated that there will be an increasing 
demand for trace elements in the manufacture of new prod-
ucts (e.g. solar panels, wind turbines, and electronic devices) 
in the near future, with a 300% increase in the demand for 
chemical elements such as Pb and Ni, among others (Erel 
et al., 2021). This raises the concern that the increasing use 
of various toxic metals may result in high concentrations in 
humans, predominantly in populations that are not fortu-
nate enough to live in regulated and monitored regions. For 
this reason, the increased use of metals must be accompa-
nied by the maximum recycling of metals and consideration 
of environmental and toxicological aspects in the selection 
of metals for industrial use (Babayigit et al., 2018). This study 
proved that penguin bone may be used to monitor trace 
element contamination in aquatic ecosystems. Further re-
search is required in this regard.  

In conclusion, this study adds novel data regarding the 
accumulation of trace elements in penguin bones and it is 
the first study to measure the levels of trace elements in 
penguin claws. Most of the elements studied herein in the 
bones of Humboldt penguins were higher than those pre-
viously reported in bones of different penguin species else-
where. Our findings add valuable data on trace element ac-
cumulation in the Humboldt penguin on the northern coast 
of Chile. Also, this study proved that X-ray fluorescence is 
a useful low-cost analytical procedure for assessing trace 
elements in the bones and claws of penguins. Because claws 
are a continuously growing tissue, the question of whether 
claws can provide reliable spatial and temporal data on trace 
metal contamination in penguins is an issue that needs to 
be further investigated. Considering that Humboldt pen-
guins are vulnerable species which face a dramatic popula-
tion decline, this study adds valuable information that can 
help to elucidate whether metal contamination affects this 
species. Further studies are needed to better understand 
any possible cause in order to be able to implement mea-
sures to reverse such a decline.
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