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Error predictions for average end diameter sectional formula  
in tree stem volume measurement
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SUMMARY

The use of the sectional formula given by the product of the cross sectional area related to the average of segment end diameters, 
times segment length, is a known method to estimate the volume of a tree stem segment. The whole tree stem volume can be obtained 
summing volumes of individual segments. There is not a formal study about the errors in using that method that allows comparing it 
to other conventional methods. In this work, following a theoretical procedure proposed recently in the forest measurement literature, 
those errors were computed. The method was evaluated applying it to the geometries of paraboloid, cone, and neiloid, to get the errors 
in tree stem volume estimation as function of a given number of segments, n. The average absolute percent errors were: ≤ 10.9 % for 
n ≥ 5; ≤ 5.5 % for n ≥ 10; ≤ 2.8 % for n ≥ 20; ≤ 1.9 % for n ≥ 30. Compared to known results, the method is better than Smalian and 
Huber methods, though it is not for the frustum of cone volume formula. Additionally, there are algebraic proves showing that the 
segment volume estimated by the method is lower than the volume for frustums of paraboloid and cone; in this work, the proof that 
it is also lower than the volume for a frustum of neiloid is provided, which completes the corresponding knowledge on the subject.
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RESUMEN

El uso de la fórmula seccional dada por el producto del área transversal asociada al promedio de diámetros extremos de segmento por 
la longitud del segmento, es un método conocido para estimar el volumen de un segmento de fuste de árbol. El volumen completo del 
fuste puede obtenerse sumando volúmenes de segmentos individuales. No hay un estudio formal acerca de los errores en el uso de ese 
método que permita compararlo con otros métodos convencionales. En este trabajo, utilizando un procedimiento teórico propuesto 
recientemente en la literatura de mediciones forestales, se calcularon dichos errores. El método fue evaluado aplicándolo a las geometrías 
de paraboloide, cono y neiloide, para obtener los errores en la estimación del volumen de un fuste de árbol como función de un número 
dado de segmentos, n. Los errores porcentuales absolutos promedio fueron: ≤ 10,9 % para n ≥ 5; ≤ 5,5 % para n ≥ 10; ≤ 2,8 % para n ≥ 
20; ≤ 1,9 % para n ≥ 30. Comparando con resultados conocidos, el método es más preciso que los métodos de Smalian y Huber pero no lo 
es para la fórmula de volumen de cono truncado. Adicionalmente, existen pruebas algebraicas de que el volumen de segmento estimado 
por este método es menor que el volumen de los truncados de paraboloide y cono; en este trabajo, se aporta la prueba que muestra que es 
también menor que el volumen de un truncado de neiloide, lo cual completa el conocimiento correspondiente sobre el tema. 

Palabras clave: métodos seccionales, subneiloide, matemáticas aplicadas.

INTRODUCTION

Progressively, more complex and accurate methods for 
tree stem volume estimates are being proposed as part of 
the knowledge evolution in forest measurements. Howe-
ver, the simplest old sectional methods are still preferred 
for practical measurements. According to Briggs (1994), 
among the most known sectional methods are: the New-
ton, Smalian, Huber, Bruce, Frustum of cone, and the 
cross sectional area related to the average of segment end 
diameters, times the segment length, method. The New-

ton method is not practical while the Bruce’s method was 
developed for butt logs (Bruce 1982). The four remaining 
methods are possibly the most conventional worldwi-
de. Errors in the use of Smalian and Huber methods as 
function of the number of segments have been calculated 
by Cruz de León and Uranga-Valencia (2013) and for the 
frustum of cone method by Cruz de León et al.1 The pre-
sent work is aimed at determining errors in the remaining 
method out of the four revised methods. 

1	 Cruz de León G, LP Uranga-Valencia, M Bañuelos Jiménez. 2014. Unpublished.
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The referred method is as old and easy to use as the 
Huber, Smalian, and the truncated of cone methods. 
However, it has not been given a conventional name; Gra-
ves (1906) refers to it as the average end diameter method; 
Grosenbaugh (1954) and Briggs (1994) call it the subnei-
loid method; Fonweban (1997) name it the Avend method. 
In agreement with Graves (1906), in this work it will be 
named the average end diameter method and it will be de-
noted as AED.

Graves (1906) and Fonweban (1997) point the use of 
AED in some regions of Europe. In a manual for Austra-
lian farmers, Reid and Stephen (2001) suggested the use of 
the Huber, Smalian and AED methods. Particularly, in the 
state of Michoacán, México, AED has been officially used 
to train forest farmers for log volume estimation (Medra-
no-Farfán 1999).

The main problem for this work can be stated by the 
question: is AED as reliable as the other three convention-
al methods for whole tree stem volume estimation by sec-
tions? It is conjectured here that: if the errors in the use of 
AED can be determined, and result in the error range of 
those methods, then AED is a reliable method.

Graves (1906) algebraically proves that the volume 
predicted by AED is lower than those for the frustums of 
paraboloid and cone with the same end diameters. Grosen-
baugh (1954) numerically shows that AED formula gives 
lower volumes, though close to a truncated of neiloid; he 
defines a hypothetical solid of revolution, named sub-
neilod, for which the AED formula gives the exact frustum 
volume. The corresponding general algebraic proof is un-
known. That complementary problem is also addressed in 
this work.

Standard forest measurement literature agrees that the 
geometry of most tree stem segments lies around a cone 
and between paraboloid and neiloid (Cruz de León and 
Uranga-Valencia 2013). The main objective in this work 
is to calculate the errors for the AED method applied to 
tree stems modeled through the former three geometries 
as function of the number of segments. The specific objec-
tives are: i) to compare the errors of the AED method to 
those obtained for the other three methods; ii) to obtain the 
general algebraic proof that the AED volume is lower than 
the truncated of neiloid’s volume. 

METHODS

Cruz de León and Uranga-Valencia (2013) proposed 
a methodology to calculate errors in volume estimation 
for the application of any sectional method to tree stems, 
as a function of the number of segments. That procedure 
was used to evaluate the AED method and test the conjec-
ture of this work. It is based on approximation methods 
of calculus to get the volume for solids of revolution, the 
classical theory of tree stem form and volume, and an 
error analysis from forest measurement by means of the 
average percent error (APE) and the average absolute per-

cent error (AAPE). Although those parameters of error are 
commonly used for random errors in forest measurements, 
the kind of errors regarded in the referred methodology 
are of systematic nature, due only to the finite number of 
segments involved in the solid of revolution´s volume es-
timation. Then, the mathematical analysis is mainly based 
on calculus and not on statistics. The known property that 
a sectional method either over-estimates or under-estima-
tes volume for a given geometry is characterized by those 
systematic errors.

The classical geometries. In the forest measurement tradi-
tional literature, stem shape is modeled through a genera-
ting function y(x) defined by the equation, 

                                                                                                                                          [1]

where x and y represent stem height from the tip and radius 
respectively, Am is a constant and m = 0, 1, 2, and 3, for the 
corresponding solids of revolution, cylinder, paraboloid, 
cone, and neilod, respectively. They are called the classi-
cal geometries in agreement with Dieguez-Aranda et al. 
(2003). 

Sectional method. It is any method to estimate volume for 
a tree stem segment or log taking it as a cylinder of defined 
average cross sectional area and length equal to the seg-
ment length (Avery and Burkhart 2002). A particular ave-
rage cross sectional area defines the corresponding method 
as it is shown below for the AED method.

The average end diameter method (AED). For a tree stem 
segment or log of length L, smaller end diameter d, and 
bigger end diameter D, the AED method for its volume 
estimation is defined by 

                                                                            [2]

The term inside square brackets of equation [2] defines the 
average cross sectional area for the AED method.

General notation for the volumes. The individual volu-
mes of tree stem segments for the AED method are called 
VAED,m,n,i, where m = 1, 2, 3 refers to the geometry, n to the 
number of segments, and i is the number of a specific seg-
ment. The total volume, given by the sum of the individual 
ones, is denoted as VAED,m,n. Their corresponding normali-
zed volumes are vAED,m,n,i, and vAED,m,n. 
 
RESULTS

Derivation of the individual volume of segment for the AED 
method. For a classical geometry of length H sectioned in 
n segments, of length (H/n), the xi coordinates for the di-
visions of those intervals are (iH/n), where ni ,,2,1 = .  
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In agreement to equation [1], their square radiuses are gi-
ven by 

[3]

Taking d=2yi-1 and D=2yi in equation [2], results

[4]

Using equation [1] to get yi-1 and yi, as function of xi-1 = (i-1)
H/n, and xi = iH/n, respectively, taking L=(xi - xi-1)=(H/n), 
and substituting them in equation [4], results 

[5]

The normalized volume of segment for AED is given 
by vAED,m,n,i=VAED,m,n,i/πAmHm+1; then,

[6]

It was obtained for each geometry m = 1, 2, and 3, as 
function of i, and for n=5, 10, 20, and 30. All the individual 
normalized volumes of segments were computed to get the 
total normalized volumes and the APE and AAPE values 
shown below. 

Total normalized volumes and average percent errors as 
function of the number of segments. The total normalized 
volumes and average percent errors obtained by the AED 
method for the different geometries as function of the 
number of segments as well as the exact values are shown 
in table 1. 

Average absolute percent errors. The differences in total 
normalized volumes related to the exact values are signifi-
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Table 1.	Total normalized volumes and average percent errors, APE, of paraboloid, cone, and neiloid, for the average end diameter 
method, AED, as function of the number of segments, n.
	 Volúmenes totales normalizados y errores porcentuales promedio, APE, de paraboloide, cono y neiloide, para el método del promedio de 
diámetros extremos, AED, como función del número de segmentos, n.

n
Paraboloid Cone Neiloid

vExact,1,n vAED,1,n APE vExact,2,n vAED,2,n APE vExact,3,n vAED,3,n APE

5

10

20

30

0.5

0.5

0.5

0.5

0.485999   

0.496067   

0.498908

0.499487

-10.9

-5.5

-2.8

-1.9

0.333333

0.333333

0.333333

0.333333

0.330000

0.332500

0.333125

0.333241

-6.2

-3.2

-1.6

-1.1

0.25

0.25

0.25

0.25

0.248830

0.249693

0.249922

0.249966

-0.8

-0.5

-0.3

-0.2

cant only for the cases n = 5, 10, 20 and 30. Table 1 shows 
the APE values corresponding to those n values, for the 
AED method, and the studied geometries. Specifically for 
this work, it was enough to calculate APE because AAPE 
= |APE|.

DISCUSSION

The results given in table 1 confirm that the AED vo-
lumes are lower than the volumes for frustums of parabo-
loid and cone, in agreement with Graves (1906), and lower 
than the volume for frustum of neiloid, in agreement with 
Grosenbaugh (1954).

Maximum AAPE can be taken as error upper-limits. As 
table 1 shows, the AAPE in using the AED method to es-
timate tree stem volumes are: (≤ 10.9 % for n ≥ 5; ≤ 5.5 %  
for n ≥ 10; ≤ 2.8 % for n ≥ 20; ≤ 1.9 % for n ≥ 30). The 
maximum AAPE for AED is between 1.9 % and 10.9 %.

The maximum AAPE for Smalian goes from 5 % to 27 %  
and for Huber from 2.5 % to 13.5 % (Cruz de León and 
Uranga-Valencia 2013). Hence, AED is better than Sma-
lian and Huber methods. However, AED is not better than 
the method which uses the frustum of cone formula whose 
maximum AAPE is between 1.5 % and 8.4 %2.

That the AED method should be better than Smalian 
is in agreement with Briggs (1994) and Fonweban (1997) 
for the case of individual logs but it is not for the Huber 
method (Fonweban 1997). For a whole tree stem, more ex-
perimental studies are required to determine whether AED 
is better than the Huber method, as theory predicts. They 
should be sufficiently accurate because both methods dif-
fer by less than 3 %.

Table 1 shows that AED and neiloid volumes are very 
close with errors under 1 % for n ≥ 5. As an original con-
tribution, in the appendix, it is provided the general proof 
that the predicted volume by AED is lower than the corre-
sponding volume obtained by the frustum of neiloid for-
mula. Similar proves for frustums of paraboloid and cone 
have been reported by Graves (1906).

2	 See footnote 1.



BOSQUE 37(1): 211-215, 2016
Error predictions for average end diameter

214

The total normalized volume of Cruz de León and 
Uranga-Valencia (2013) corresponds exactly to the abso-
lute form factor for a given method and geometry. Hence, 
table 1 gives approximations to the absolute form factors 
for paraboloid (1/2), cone (1/3), and neiloid (1/4), as a 
function of the number of segments, related to the AED 
method. That means to model those geometries as a se-
quence of frustums of subneiloids and a subneiloid at the 
tip. Table 1 simultaneously gives the corresponding errors 
in volume and form estimation.

The Smalian method is more practical than the Huber 
method and, frequently, it is preferred even when it in-
volves a much higher error than those in the latter (Husch 
et al. 1982).  AED and Smalian are at the same practical 
level because both methods need the same measurements 
as input: end diameters, and length of segment. The results 
of this work show that AED involves errors lower in mag-
nitude but closer to the Huber method.  

CONCLUSIONS

It is possible to evaluate theoretically the AED method 
using the suggested methodology. The error limits in using 
the AED method for whole tree stem volume estimation by 
sections were obtained. Particularly, results predict that the 
AED method should be better than the Huber and Smalian 
methods though not better than the method which uses the 
frustum of cone formula. That proves the conjecture of this 
work.  It was proved here that the predicted volume by 
AED is lower than the corresponding volume given by the 
frustum of neiloid formula, which completes that kind of 
proves for the three main geometries used in the approach 
for tree stem form.

AED contains both, practicality and accuracy, of the 
Smalian and Huber methods, respectively. The former fea-
tures are enough to justify and support the use of the AED 
method; it can be regarded as a reliable method for whole 
tree stem volume measurements.
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                                                       .

By definition, s > 0, S > 0, and L > 0, then, (s1/3S1/3L) > 0. 
Also, as the square of any number different of zero is po-
sitive, (s1/6-S1/6)2 > 0, it results that (VNeiloid – VAED) > 0, what 
means that VNeiloid > VAED . Then, it has been proved that the 
volume of AED is lower than the volume for the frustum 
of neiloid, what explains the corresponding results of table 
1, and the name of subneiloid given to the AED method by 
Grosenbaugh (1954).

APPENDIX

Proof on that the sectional volume for the AED method is 
lower than the corresponding one for frustum of neiloid. 
The volume for a frustum of neiloid of length L, and sma-
ller and bigger end cross sectional areas s and S, respecti-
vely, is given by 

                                                                        .

The volume predicted by AED for a segment of the same 
former conditions can be obtained from equation [10], ta-
king 2)4( ds π=  and 2)4( DS π=  as

                                                                .

Making some algebra it happens that
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