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SUMMARY

Huber, Smalian and Newton methods, to estimate tree stem and log volume by sections, were theoretically evaluated applying them to 
the geometries of paraboloid, cone and neiloid. The study follows approximation procedures from calculus for volume estimation of 
solids of revolution as function of the number of segments and error analysis methods from forest measurement research. The errors in 
using Huber and Smalian methods have been determined. Additionally, it was algebraically proved that the Huber’s error is exactly one 
half of the Smalian’s error and opposite in sign. The results predict that, for any tree stem modeled classically, Huber’s and Smalian’s 
average  absolute percent errors should be: less than 13.5 % and 27 %, respectively, for five or more segments; less than 7 % and 14 %, 
for 10 or more segments; less than 3.6 % and 7.2 %, for 20 or more segments; less than 2.5 % and 5 %, for 30 or more segments. This 
work provides a quantization on the classical theory of tree stem and log volume estimation. It could help to unify that theory and make 
it a more compact reference for forest measurement teaching and research.

Key words: sectional methods, tree stem volume.

RESUMEN

Los métodos de Huber, Smalian y Newton para estimar el volumen de troncos y trozas de árbol por secciones, fueron evaluados 
teóricamente, aplicándolos a las geometrías de paraboloide, cono, y neiloide. El estudio sigue procedimientos de aproximación 
del cálculo para estimación de volumen de sólidos de revolución, como función del número de segmentos, y métodos de análisis 
de error de investigación en mediciones forestales. Se han determinado los errores en el uso de los métodos de Huber y Smalian. 
Adicionalmente, se probó algebraicamente que el error de Huber es exactamente la mitad del error de Smalian y de signo opuesto. 
Los resultados predicen que, para cualquier tronco modelado clásicamente, los errores porcentuales absolutos promedio de Huber y 
de Smalian deberían ser: menores que 13,5 % y 27 %, respectivamente, para cinco o más segmentos; menores que 7 % y 14 % para 
10 o más segmentos; menores que 3,6 % y 7,2 %, para 20 o más segmentos; menores que 2,5 % y 5 %, para 30 o más segmentos. Este 
trabajo proporciona una cuantificación sobre la teoría clásica de estimación de volumen de troncos y trozas de árbol. Podría ser de 
utilidad para unificar dicha teoría y hacerla una referencia más compacta para enseñanza e investigación sobre mediciones forestales.

Palabras clave: métodos seccionales, volumen de tronco de árbol.

INTRODUCTION

Accurate determination of tree stem and log forms and 
volumes is a permanent question and represents main in-
formation in the forest measurement field; for instance, in 
forest inventory, tree growth and biomass estimation. The 
spectrum of methods for stem form and volume determi-
nation is extremely wide and the preferred methods are not 
the same in the different regions of the world or even of a 
country. Similarly, some of the methods in current use are 
different from those used in the past and new methods will 
be proposed in the future. It is beyond the scope of this 
work to make an extensive review on that subject. Inside 
that huge and diverse information, a standard or conven-

tional knowledge is notorious, the named traditional, clas-
sical or old theory. Let us focus on it. 

In the elementary forest measurement literature, tree 
stem shape, for tree stems of average circular cross-sec-
tions, is modeled by longitudinal sections using the solids 
of revolution: cylinder, paraboloid, cone, and neilod. Tho-
se will be called here classical geometries in agreement to 
Diéguez-Aranda et al. (2003).

Tree stem and log volumes depend on tree stem geome-
try. The most widely known sectional methods for volume 
estimation are: Smalian, Huber, and Newton methods. All 
three methods calculate volume based on cross-sectional 
areas; measured at the log ends (Smalian), at the mid-
point (Huber), or at both ends and mid-point (Newton). 
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Cross-sectional areas are assumed to be circular. In gene-
ral, Huber’s formula is more accurate even though it requi-
res only one diameter to be measured. In particular, those 
methods are related to classical geometries. Then, they 
will be called here classical volume sectional methods. 
The three methods give exact results for cylinder and pa-
raboloid. The Newton method gives exact results for all 
the classical geometries (Diéguez-Aranda et al. 2003). In 
the following, a review of known forest measurement lite-
rature about those methods is made.

Smalian and Huber methods are preferred in the field 
because they are easier to apply than the Newton method. 
It is generally known that the Smalian method is less ac-
curate than the Huber method but it is more frequently 
used; particularly, when logs are stacked in piles where the 
mid-point diameter is not available for measurement. His-
torically, the opinions about the use of those two methods 
have been divided. Graves (1906) mentions the use of the 
Huber method in Europe and the Smalian method in USA 
but predicts the further adoption of the Huber method also 
in USA. Belyea (1931) and Bruce and Schumacher (1950) 
point that the Huber method is less used than the Smalian 
method in spite of its better accuracy. Philip (1994) affirms 
that log volumes are normally estimated by the Huber’s 
formula.

Similarly, different opinions can be found about tree 
stem and log forms. For Chapman and Meyer (1949) tree 
stem form never approximates a cylinder and seldom a 
cone or neiloid. They affirm that the average log resembles 
the form of a truncated paraboloid. That supports the use of 
Smalian and Huber methods. For Bruce and Schumacher 
(1950) the most frequent log geometry is different from a 
perfect paraboloid. Then, they suggest the use of the Huber 
method. In words of Belyea (1931) a tree stem is more or 
less cone-like in form. He regards paraboloid and neiloid 
as deviations from the conic geometry. Bruce (1982) men-
tions the use of the truncated cone geometry in a region 
of USA to estimate volumes for all the logs of a tree stem 
in order to compensate for over and underestimations bet-
ween upper and butt logs. Graves (1906) assures that most 
logs have a volume bigger than a truncated cone. For Chap- 
man and Meyer (1949) log volume rarely lies between that 
of a frustum of paraboloid and that of a cylinder.

It is generally accepted that a truncated neiloid can ap-
proach the form of a tree stem at the lowest part. Neiloid 
geometry corresponds to the lower section up to an ap-
proximated height of 10 % of tree total height (Van Laar 
and Akça 2007). Neiloid geometry affects butt log forms, 
which makes difficult their accurate volume estimation, 
particularly, for big diameters. Phillip (1994) assures that 
for a plantation-grown tree, 40 cm of diameter at breast 
height and 25 m tall, 80 % of the tree stem volume is in 
the lowest 10 m. He suggests the use of Huber´s formula 
for that lowest part. Husch et al. (1982) say that for butt 
logs with excessive butt swell the Huber´s method is even 
better than the Newton one. Graves (1906) assigns an error 

from 5 to 20 %, in using the Smalian method for butt logs, 
which depends on log length. Bruce (1982) developed a 
general method to estimate butt log volumes. An improved 
method supported on Bruce’s work has been proposed by 
Patterson and Doruska (2004).

Unifying the whole information given formerly, a con-
clusion analog to that of Belyea (1931) can be obtained. 
It could be regarded that the geometry of most tree stem 
segments or logs should lie around a frustum of cone bet-
ween the frustums of paraboloid and neiloid. Therefore, 
only those three geometries will be taken into account in 
this work.

The whole tree stem shape cannot be modeled conve-
niently by a single classical geometry. The average tree 
stem form is modeled as a truncated neiloid at the lowest 
part, a truncated paraboloid at the central section and a pa-
raboloid or cone at the top (Husch et al. 1982, Avery and 
Burkhart 2002, Van Laar and Akça 2007). The main practi-
cal problem is that it is not possible to know exactly where 
one geometry ends and another begins (West 2004).

The classical theory of tree stems still represents a sti-
mulating and solid reference in forest measurement tea-
ching and research. Wood et al. (1990) used those geome-
tries in the development of an important method of volu-
me estimation in current use called the centroid method. 
Yavuz (1999) found that the centroid method, applied to 
logs of three species, is better than Newton, Huber and 
Smalian methods. However, using the water displacement 
technique, Figueiredo-Filho et al. (2000) have found that 
the Huber method performs better than the Newton, the 
Smalian, the centroid and other methods for a coniferous 
species. Inoue (2006) employed the classical geometries to 
derive a general relation between stem volume and surface 
area form-factors independent of position. Cruz de León 
(2010) obtained a general sectional volume equation for 
those geometries.

The classical theory will be a better established theory 
when its knowledge becomes unified. Perhaps, more quanti-
tative analyses on those subjects, as the one proposed in this 
work, can help to get it.

The present work assumes that if a formal theoretical 
evaluation of the classical volume sectional methods, using 
methods from fundamental calculus and forest measure-
ments, is made for paraboloid, cone and neiloid as function 
of the number of segments, then, the corresponding errors 
for those sectional methods can be computed. The main 
objective is to quantify the errors in the use of Smalian 
and Huber methods for each one of those geometries. Even 
when the Newton method is exact for the three geometries 
and Smalian and Huber methods are exact for paraboloid, 
they are included in the analysis to verify the correctness 
of the numerical treatment.

At the end of this work, the theoretical results obtained 
here are compared to those experimental ones obtained in 
a recent research by the xylometer technique on logs of 
teak trees (Akossou et al. 2013).
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METHODS

Approximation methods of calculus for volume estimation 
of solids of revolution. In agreement to the approximation 
methods of calculus for volume estimation, if a solid of re-
volution of length H is divided in n sections of length H/n, 
perpendicular to its axis of rotation, to each section corres-
ponds a cylinder of the same length and approximate volu-
me. The way to determine the individual cylinder volume 
defines a particular method. The total volume of the solid 
can be approached as the sum of the individual cylinder 
volumes. Conversely, to each cylinder corresponds a sec-
tion of the solid and as the number of cylinders increases 
the approaching to volume improves (Stewart 2002). For 
instance, a simple method is defined choosing the cylin-
der diameter as that at a section end of the solid. Figure 1 
shows that method for a paraboloid of total length H sec-
tioned in five parts of equal length H/5 and five cylinders 
of that same length in a three dimensional Cartesian sys-
tem. The cylinders cross sections are chosen as those at the 
right ends of the corresponding segments of paraboloid.

Implicitly, as it can be seen in figure 1, the form of a 
solid of revolution can be approximated by means of a se-
quence of defined cylinders and as the number of cylinders 
increases the approaching to the form improves. 

Forest measurement methods for tree stem volume esti-
mation. An analog process to that of the former section is 
known in the forest measurement literature to estimate the 
volume for a whole tree stem by longitudinal sections or 
segments. A given number of segments of the same length 

Figure 1.	Volume of a paraboloid of length H, sectioned in five 
segments of individual length H/5, approached by a sequence of 
five cylinders of the same length. The cylinders cross sections cor-
respond to those at the right ends of the segments of paraboloid.
	 Volumen de un paraboloide de longitud H, seccionado 
en cinco segmentos de longitud individual H/5, aproximado por 
una secuencia de cinco cilindros de la misma longitud. Las sec-
ciones transversales de los cilindros corresponden a los extremos 
derechos de los segmentos de paraboloide.

are selected along the tree stem and their individual volu-
mes are estimated using any classical sectional method, 
usually the Smalian or the Huber method (Bruce and Schu-
macher 1950). 

Generating function for classical geometries. In forest 
measurement traditional literature, stem shape is modeled 
through the generating function, 

                                                                                                                              [1]

where x and y are the coordinates of a Cartesian plane, 
Am is a constant and  m= 0, 1, 2 and 3. The solids of revo-
lution related to equation [1] are cylinder, paraboloid, cone 
and neilod, respectively; formerly called classical geome-
tries. The exact volumes for the classical geometries of to-
tal length H, defined here as mExactV , , are given by

[2]

Sectional methods. Sectional methods for tree stem volu-
me measurements regard any section or segment, of length 
L, as a cylinder. In general, they can be defined in terms of 
a mean cross sectional area S  for the segment such that its 
volume is given by LSV =  (Avery and Burkhart 2002). 

For a tree stem segment or log, of length L, end cross 
sectional areas, S at the large end, s at the small end and 

2/1S  at the middle, the mean cross sectional areas

                                                                                                                    
[3]
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[5]

define Smalian, Huber and Newton methods, respectively. 
Then, if a tree stem or log is modeled by a solid of revolu-
tion, those methods represent particular volume approxi-
mation methods of calculus.

General notation for the volumes. The following notation 
is defined here for the mathematical work. The individual 
volumes of tree stem segment for the different methods 
and geometries will be called .,,, inmMethodV ; where method 
will refer to any of the Exact, Smalian, Huber and Newton 
methods, respectively. The remaining variables are: m, the 
power in equation [1] that refers to the geometry, n, the 
total number of segments, and i, the number of a particular 
segment. The total volume as function of the number of 
segments, given by the sum of the individual ones, is de-
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noted as 
                  

. Then,

                                             .                                                            [6]

Error analysis. In forest measurement literature, when di-
fferent methods of volume estimation are compared for a 
set of logs, bias is usually estimated by the average percent 
error (APE) and accuracy by the average absolute percent 
error (AAPE) related to defined reference volumes (Fi-
gueiredo Filho et al. 2000, Patterson et al. 2007). In the 
present work, those parameters are used for error analyses 
taking as reference the exact volumes. Then, the APE co-
rresponds to

[7]

APE gives an average measure of the percentage of 
over or underestimation in relation to exact volumes. Po-
sitive APE values mean overestimation and negative ones 
underestimation. Similarly, the average absolute percent 
error is given by 

[8]

AAPE is a measure of dispersion analog to the stan-
dard deviation. The standard deviation can also be used 
for the same type of error analysis (Plank and Cahill 1984). 
The results for the former parameters were obtained by 
means of Excel.

RESULTS

Derivation of the general equations for the individual volu-
me of segment as function of the number of segments. If a 
classical geometry of length H is sectioned in n segments, 
of length (H/n), the ix  coordinates for the divisions of those 
intervals are (iH/n); where, ni ,,2,1 = . In agreement to 
equation [1], their corresponding square radius are given by 

[9]

The exact volumes of segment as function of the to-
tal number of segments inmExactV ,,,  will be the reference 
values. They can be obtained using equation [2] for the 
difference between two whole figures whose bases are at 
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The normalized exact volume is defined here as

[10b]

For the Smalian method, the volume equation for an 
individual segment is

[11a]

Similarly, the corresponding normalized Smalian vo-
lume is defined as

                                                                                       [11b]

For the Huber method, the radio is taken at the middle 
of the segment, then, the volume for the individual volume 
is given by

[12a]
                                                           
      

                                                     .
The normalized Huber volume is given by

                                                                                                     [12b]

In general, the volume equation for the Newton method 
depends on the volumes given by Smalian and Huber 
methods (Cruz de León and Cruz de León 2006). The co-
rresponding equation is  

[13a]
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[13b]

For m = 1, the case of a paraboloid, equations [11-13]
give the same result,

[14]

which confirms that for a frustum of paraboloid any 
classical method gives the exact volume.  

The normalized forms of equations [10-13] are non-
dimensional and were worked out using Excel for each 
geometry m, as function of i, and for n = 5, 10, 20, 30 and 
100. All the individual normalized volumes of segments 
were computed and used to get the total normalized volu-
mes and the APE and AAPE values. 

Total normalized volumes as function of the number of 
segments. Table 1 shows the total normalized volumes for 
the different methods and geometries as function of the 
number of segments.

APE and AAPE as function of the number of segments. The 
differences in total normalized volumes related to the exact 
values are significant and of practical interest only for the 
cases n = 5, 10, 20 and 30. Table 2 shows the APE values 
obtained from the results for the normalized volumes of 
individual segments, corresponding to those n values, for 
Smalian and Huber methods, and the studied geometries. 

Particularly, for the problem of this work, it happens that
APEAAPE = . Then, it is enough to compute the APE va-

lues for each method and geometry. Their absolute values 
give the AAPE values. The AAPE values for table 2 are the 
same but the negative signs must be turned into positive.

DISCUSSION AND CONCLUSIONS

The numerical results of this work, shown in tables 1 
and 2, confirm what is known about the standard methods. 
The Newton method is exact for paraboloid, cone and nei-
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Table 1.	 Total normalized volumes of paraboloid, cone and neiloid, for the classical sectional methods as function of the number of 
segments n.
	 Volúmenes totales normalizados de paraboloide, cono y neiloide, para los métodos seccionales clásicos como función del número de segmentos n.     

n
Paraboloid Cone Neiloid

Newton Smalian Huber Newton Smalian Huber Newton Smalian Huber
5 0.5 0.5 0.5 0.33333 0.34000 0.33000 0.25000 0.26000 0.24500

10 0.5 0.5 0.5 0.33333 0.33500 0.33250 0.25000 0.25250 0.24875
20 0.5 0.5 0.5 0.33333 0.33375 0.33313 0.25000 0.25063 0.24969
30 0.5 0.5 0.5 0.33333 0.33352 0.33324 0.25000 0.25027 0.24986

100 0.5 0.5 0.5 0.33333 0.33335 0.33333 0.25000 0.25003 0.24999

loid. Smalian and Huber methods are exact for paraboloid. 
Table 2 shows that for cone and neiloid Smalian overesti-
mates and Huber underestimates volume in agreement to 
Husch et al. (1982). However, those deviations are quanti-
fied here as a function of the number of segments.

Belyea (1931) affirms that for geometries going from 
paraboloid to neiloid, except for paraboloid itself, the error 
by Huber’s formula is approximately half of Smalian’s 
formula and is mathematically opposite in value. Chap-
man and Meyer (1949) state that the error is just a half. 
Equivalently, Husch et al. (1982) assure that the Smalian’s 
error is twice the Huber’s error and opposite in sign. Phi-
lip (1994) proved mathematically that the Huber’s error is 
exactly a half of the Smalian’s one and of opposite sign for 
a cone. The numerical APE results of table 2 show that, 
for a neiloid, the error in volume estimation using the Hu-
ber method is closely to a half of the Smalian error and 
of opposite sign in agreement to the assertions of Belyea 
(1931); though, for a cone, the Huber´s error is exactly a 
half of Smalian’s error and of opposite sign in agreement 
to Phillip (1994).

The question whether the error in volume estimation 
using the Huber method is closely or exactly a half of the 
Smalian error and of opposite sign, as cited references su-
ggest, arises. Due to their numerical nature, the previous 
results of this work give an apparent ambiguous answer. 
Husch et al. (1982) provide only a textual proof of their 
assumption as follows: it can be shown that subtracting 

Table 2.	 APE values (%) for Smalian and Huber methods applied 
to classical geometries as function of the number of segments n.
	 Valores del APE (%) para los métodos de Smalian y Huber apli-
cados a las geometrías clásicas como función del número de segmentos n.

n
Paraboloid Cone Neiloid

Smalian Huber Smalian Huber Smalian Huber
5 0 0 12.4 -6.2 26.8 -13.4
10 0 0   6.4 -3.2 13.9 -6.9
20 0 0   3.2 -1.6 7.1 -3.5
30 0 0   2.2 -1.1 4.7 -2.4
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Newton’s formula, first from Smalian’s formula and then 
from Huber’s formula, the error incurred by Smalian’s for-
mula is twice that incurred by Huber’s formula and oppo-
site in sign. In the present work, before the reference of 
Husch et al. (1982) was available, the same answer had 
been algebraically proved independently following the 
Chapman and Meyer assumption (1949) and the equiva-
lent Newton formula given by Cruz de León and Cruz de 
León (2006), from which equation [13a] was derived. That 
formal proof is added in the appendix of this work.

In studies of tree stem volume by sections the question 
of segment length needs to be addressed. West (2004) su-
ggests section lengths of 0.5-1 m for large trees and shorter 
lengths for small trees. Van Laar and Akça (2007) suggest 
segments of 1 m in length for trees below 12 m, and 2 m 
for trees larger than 12 m. Both proposals can be unified 
considering an interval of 0.5-2 m for the length of the tree 
stem segments. Assuming intervals of the same length the 
results shown in table 2 of this work, as function of the 
number of segments, would correspond to tree stem total 
height intervals 2.5-10 m, 5-20 m, 10-40 m and 15-60 m.

From table 2 and from the fact that the magnitude of 
the Huber’s error is exactly a half of the magnitude of the 
Smalian’s error, upper-limits for the AAPE can be dedu-
ced, independently on the tree stem geometry. The AAPE 
in using Huber and Smalian methods to estimate tree stem 
volumes would be less than 13.5 % and 27 % from the exact 
values, respectively, if the number of segments is equal to or 
larger than 5; less than 7 % and 14 % for a number of seg-
ments equal to or larger than 10; less than 3.6 % and 7.2 % 
for a number of segments equal to or larger than 20; and less 
than 2.5 % and 5 % if the number of segments is equal to 
or larger than 30. The Huber’s error lies between 2.5 % and 
13.5 %. The Smalian’s error is between 5 % and 27 %, close 
to the 5 % to 20 % pointed by Graves (1906) for butt logs.

In an experimental study by means of the xylometer 
technique on logs of teak trees to study the errors in tree 
stem volume estimation, as function of log length, for tree 
stems of nearly 15 m of total height, Akossou et al. (2013) 
found that both Huber and Smalian methods overestima-
te tree stem volumes. For logs 0.5 m long, the maximum 
errors are 3 % for the Huber method and 4 % for the Sma-
lian method. For logs 1 m long, the same errors are 8 % 
and 9 %, respectively. For logs 3 m long the corresponding 
errors are 10 % and 24 %. The maximum Huber´s error 
lies between 3 % and 10 %. The maximum error for the 
Smalian method is between 4 % and 24 %.

In the study discussed above, 15 m of total height and 
logs of 0.5 m, 1 m and 3 m would correspond to numbers 
of segments n = 30, 15 and 5, respectively, in this work. 
Although it has not been computed the case for n = 15, 
table 2 shows that for n = 30 the maximum Huber error is 
2.5 % and the maximum Smalian error is 5 %. For n = 5, 
those errors are 13.5 % and 27 %, respectively. In theory, 
the Huber method underestimates volume; though, should 
attention be given only to the magnitude of the maximum 

errors, the experimental data are close to the theoretical 
predicted values of the present work.

The main objective defined for this work has been ob-
tained. The errors by volume estimation of Huber and Sma-
lian methods for the classical geometries paraboloid, cone 
and neiloid, as function of the number of segments, have 
been determined. Common qualitative knowledge on the 
classical theory of tree stem measurements has been quan-
titatively verified. Theoretical results are in agreement to 
experimental data. Finally, it has been explicitly proved that 
the error in using the Huber method for volume estimation 
is exactly a half of the error corresponding to the Smalian 
method and opposite in sign for the classical geometries.   
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APPENDIX

Proof about that the error of the Huber method is exactly 
a half of the error of the Smalian method and opposite in 
sign. Ordering terms in the traditional Newton formula 
leads to the general relation among Newton, Huber and 
Smalian volumes 

(Cruz de León and Cruz de León 2006) from which equa-
tion [13a] of this work was derived. The former equation 
also can be written as

and

.
Those equations lead to the following corresponding equa-
tions 

and
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As the Newton volume corresponds to the exact volume 
for all the classical geometries, the Huber’s error to esti-
mate volume, called here EHuber, can be defined as

and the Smalian’s error, called here ESmalian, as

.
 It can be seen that

and using the former definition of the Huber’s error it hap-
pens that

                                                     
then, 

                                                              
which means that, for any classical geometry, the Huber’s 
error is exactly a half of the Smalian’s error and of oppo-
site sign as it was affirmed in the conclusions of this work. 
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