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SUMMARY


Statistical methods are indispensable for scientific research. In forest sciences, the use of null hypothesis significance tests (NHSTs) 
has been the rule of thumb to judge hypotheses or associations among variables, in spite of the multiple problems of these techniques 
and the several criticisms published for many years in other scientific areas. In this review, the origin of current techniques, their most 
important problems, and some alternatives that are known to most forest researchers are shown. Persistence in using NHSTs, instead of 
better statistical methods or without adequate complements, could render our work inefficient and risky. Reasons for the permanence 
of NHSTs in forest sciences are discussed. 
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RESUMEN 

Los métodos estadísticos son una parte indispensable del quehacer científico. En las ciencias forestales el uso de pruebas de significancia 
estadística ha sido la regla predominante para juzgar hipótesis o asociaciones entre variables a pesar de sus múltiples problemas y 
las diversas críticas publicadas por muchos años en otras áreas de la ciencia. En esta revisión se muestra el origen de las actuales 
metodologías, sus principales problemas y se presentan algunas opciones al alcance de la mayor parte de los investigadores. De 
continuar usando estas técnicas en lugar de métodos estadísticos correctos o sin el adecuado complemento, el trabajo podría tornarse 
ineficiente y riesgoso, en especial, dadas las importantes decisiones que en materia medioambiental corresponde tomar. Razones para 
la permanencia de estas pruebas en las ciencias forestales son discutidas. 

Palabras clave: prueba de significancia estadística, valor de p, hipótesis nula, criterios de información, ANDEVA. 

INTRODUCTION is necessary to generate a discussion given the magnitude 
and importance of decisions related to natural resources 

The work of foresters, as professionals directly related that are supported by data analyses. 
to nature, is focused on addressing the causes of natural 
phenomena. During this process, a set of methods learned WHAT ARE NHSTs AND WHAT IS THEIR ORIGIN? 
during our undergraduate studies, and which usually seem 
to be beyond question, are used. Among these are null Current NHSTs are the outcome of the combination 
hypothesis significance tests, NHSTs (ANOVA, student t of the foundational works of Fisher (1925, 1935), and 
test, Chi square, among others). NHSTs have been criticized Neyman and Pearson (1928ab) (Spielman 1974, Goodman 
almost since their very origin (Berkson 1938, 1942). 1993, Gill 1999, Anderson et al. 2000). 
However, these criticisms have not been acknowledged Fisher (1925, 1935) proposes that a statistical hypothesis 
enough in the forestry area. This review shows some of H0 must be defined, which has a known distribution for the 
the most important problems and limitations of these statistic T. First, the value and probability (the p-value) of 
methods, their scope, possible solutions and the reason of T should be calculated from the data. Finally, H0 must be 
the persistent use of these methods. This work does not rejected if the significance level is small enough. On the 
intend to be an exhaustive review or an original idea, but it other hand, Neyman and Pearson (1928ab) proposed to 

3 

DOI: 10.4067/S0717-92002011000100001

mailto:sestay@bio.puc.cl


BOSQUE 32(1): 3-9, 2011 
Data analysis in forest sciences 

evaluate two complementary hypotheses H0 and H1. First, 
a priori values for α and β (or Type I and Type II errors) 
are defined. Given this, Neyman and Pearson define the 
power of the test, 1- β, which is the probability of rejecting 
a false null hypothesis. Once the hypotheses are defined, 
the researcher must use the test with the highest power. If 
T is higher than a critical value α, then reject H0 and accept 
H1; otherwise accept H0. 

The synthesis of these two approaches leads us to 
the current NHSTs: two complementary hypotheses are 
evaluated with a predefined critical value, but calculating a 
p-value and forgetting to search for the test with the highest 
power. Many of the problems of the current methodology 
come from the fusion of these two approaches (Goodman 
1993, Gill 1999). However, before continuing to examine 
the criticisms of these methods, it is convenient to look at 
the current status of their use in forest sciences. 

selection process. This is called the “odds-against-chance” 
fallacy (Carver 1978, Falk and Greenbaum 1995, Johnson 
1999, Kline 2004). Finally, the p-value is interpreted as 
the probability of H0 being true, that is Pr(H0 |Data) which 
is called the “inverse probability” fallacy (Carver 1978, 
Cohen 1994, Johnson 1999, Nickerson 2000, Kline 2004). 
Of course, the question is: if all of these interpretations 
are incorrect, then what does the p-value mean? Figure 1 
shows a probability density function with its mean μ. The 
dark area represents the α value. 
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THE USE OF NHSTs IN FOREST SCIENCES 

In order to have a preliminary notion of the influence of 
NHSTs in forest sciences, we carried out a review of two of 
the most influential journals in forest science in the world, 
namely “Forestry” and “Forest Ecology and Management”. 
All issues between January 2009 and July 2010, 82(1-5) 
- 83(1-3), in Forestry and the full year 2009, 259(1-12), 
in Forest Ecology and Management were reviewed. All 
articles that contained some statistical evaluation together 
with p-values in their results were identified. We did not 
make any kind of judgment about the relevance of those 
p-values in the conclusions of each study. The latter would 
have demanded a detailed reading of each paper, which is 
out of the scope of this review. In Forestry, from 69 regular 
articles, 42 (61 %) had at least one p-value in their results. 
In Forest Ecology and Management, 124 of 180 papers 
had at least one p-value (69 %). 

It is clear that the use of NHSTs is widespread in forest 
science. The previous review considers only two journals, 
but it would be very interesting to know what proportion 
of professional reports in private companies and public 
services uses this methodology and how relevant those 
results are for decision-making. 

PROBLEMS WITH NHSTs 

What does the p-value mean? There are at least three 
common interpretations of the p-value often repeated in 
the literature (Carver 1978). The first is that the p-value 
is the degree of replicability of the result, being 1-p the 
probability that a replicate of the study also yields a 
significant result (Carver 1978, Johnson 1999, Nickerson 
2000, Kline 2004). This is called the “replication fallacy” 
(Falk and Greenbaum 1995, Gill 1999, Kline 2004). The 
second interpretation is that the p-value is the probability 
of obtaining the same outcome by chance or the probability 
that the outcome could only be the result of the sample 
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Figure 1. Example of a normal probability density function. 
μ represents the mean value and the dark area represents the α 
value. 

Ejemplo de una función de densidad de probabilidad normal. 
μ representa la media y el área sombreada representa el valor de α. 

When a null hypothesis, H0, is defined, then the area 
under the curve between the calculated T value (Tc) and 
∞ and/or -∞ is the p-value, Pr(T ≥ Tc l H0). The p-value 
is the probability of obtaining our calculated T value or a 
more extreme one, given that the null hypothesis is true 
(Gill 1999, Johnson 1999). With the correct definition, the 
problems of the previous interpretations may be detected. 
In the first case, it is clear that the p-value does not represent 
the confidence in the test. Since the p-value is calculated 
from our set of data, Pr(Data l  H0), the p-value does not 
say anything about what the distribution of the T statistic 
is, given multiple sets of data (Gill 1999). The second 
and third interpretations have the same problem: they 
assume that the p-value is the probability of H0 given the 
data, Pr(H0 l Data). Nevertheless, the p-value is calculated 
assuming H0 is true, Pr(Data l H0). Both probabilities 
are not the same (Carver 1978, Cohen 1994, Falk and 
Greenbaum 1995, Gill 1999, Johnson 1999, Nickerson 
2000). From the Bayes theorem: 

Pr(Data | H 0 )Pr(H 0 )Pr(H 0 | Data)= 
Pr(Data) 

[1] 

At this point the reader may feel that these are just 
problems of interpretation, and that an informed researcher 
can obtain the real meaning from NHSTs. However, the 
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next objections show that NHSTs really contribute little 
to the discovery of the underlying mechanisms of any 
phenomenon. 

Null hypotheses and their relevance. When NHSTs are 
used, it is assumed that the population parameter exists and 
is fixed at some value; this is the null hypothesis. But, how 
plausible is it that samples taken from different populations 
(or treatments) have exactly the same parameter value 
that the null hypothesis suggests? For example, what is 
the probability that variables like DBH, density, above 
ground biomass or any others have the same value in two 
or more stands? The null hypotheses are known to be false 
before beginning the analysis (Berkson 1938, Cohen 1994, 
Johnson 1999, Anderson et al. 2000, Nickerson 2000). 
The only information that a NHST gives us is whether 
the sample size was large enough to detect the difference 
(Yoccoz 1991). For example, if the values of sample sizes, 
means, and variances for two samples are N1 , N2 , X1 , 

X 2 , S1
2 and S2

2 , then the t-student statistic would be, 

t 1X 2

2 2
1 

X− 
= 

S S [2] 
+ 2


N1 N2


When sample sizes increase, means and variances will 
become stabilized around their real values; but even though 
the difference between means is small, if N1 and N2
increase, then t increases, and the p-value decreases until 
it becomes smaller than 0.05. The p-value is arbitrary; any 
association will be significant if the sample size increases 
enough. 

In forest sciences it is possible to find several examples 
where different populations or stands of some organisms 
are compared using NHSTs, even between localities. As a 
researcher or professional in charge of a study, the question 
is not if A and B are different, as Tukey said in 1991, but 
what the direction and magnitude of the difference is. And 
the answer will never be obtained from a NHST (Anscombe 
1956, Tukey 1991, Frick 1996, Martínez-Abraín 2007). 

Statistical, theoretical and/or practical significance. One 
of the most relevant and less emphasized aspects of any 
research is the - theoretical or practical- significance of 
the results. Let us assume that a statistically significant 
difference in an experiment is found, and it is concluded 
that treatment X has an effect on, for example, the growth 
of seedlings of species Y in a nursery. However, it is 
possible to see that the increment due to treatment X is 
on average 0.5 cm, which for species Y, and its culture, is 
irrelevant. This takes us back to the previous point: despite 
the statistical significance, the most important thing is the 
direction and magnitude of the effect (Yoccoz 1991). It is 
important to remember that it is the theoretical framework 
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in which the problem is placed where the real significance 
of the results will be found (Yoccoz 1991). 

Additional criticisms to NHSTs. One of the more serious 
criticisms towards NHSTs is their logical inconsistency. 
The logical base of the tests lies in the syllogism called 
modus tollendo tollens or indirect reasoning (Berkson 
1942, Falk and Greenbaum 1995, Gill 1999, Nickerson 
2000). This syllogism works in the following way: 

If A then B 
B is false 
Then A is false 

In terms of our test, the latter is equivalent to: 
If H0 is true then the data must follow the pattern X 
The data do not follow the pattern X 
Therefore H0 is false 

This syllogism is valid in the case of categorical 
premises, but it is invalid with probabilistic premises 
(Cohen 1994, Falk and Greenbaum 1995, Nickerson 
2000). Notice that: 

If H0 is true then probably P > 0.05 
P < 0.05 
Therefore H0 is probably false 

There are no logical reasons to doubt the veracity of 
H0 given that a rare event has occurred (Spielman 1974). 
Furthermore, it is important to notice that H0 makes 
reference to an exact value (usually 0), but H1 represents 
all other infinite possibilities. The logical inconsistency 
of NHSTs is a fact acknowledged by their followers, who 
recognize some usefulness despite these inconsistencies 
(Chow 1988, Hagen 1997, 1998). As Falk (1998) pointed 
out, defending a logically invalid argument could make 
some sense if experience indicates some valid relationship. 
However, when the test has an inconsistency that might, for 
example, make us reject a null hypothesis that a posteriori 
has a reasonable or high probability to be true, it becomes 
unacceptable (Berger and Sellke 1987, Falk 1998). 

ALTERNATIVE STATISTICAL TECHNIQUES FOR A 
BETTER DATA ANALYSIS 

Forestry literature is plentiful in articles about new 
methods or new statistical approaches other than NHSTs, 
but usually these new approaches are mixed with p-values 
and other characteristics of NHSTs without recognizing 
the deep differences among them. In order to facilitate 
the decision about what the best analytical approach for 
a specific problem is; in this section we present some 
alternatives, their scope, requirements and advantages/ 
disadvantages of their use. 

Suggested complements for NHSTs. If the researcher feels 
comfortable about NHSTs despite the previous arguments, 
and the use of a new technique is not possible, then we 
strongly recommend complementing them with some 
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analyses such as: 

• Confidence intervals: they provide information about the 
effect size and the uncertainty of the estimation (Johnson 
1999, Walshe et al. 2007), which avoids the dichotomous 
thinking associated to NHSTs. This makes them an 
essential component for any data analysis. Gardner 
and Altman (1986) pointed out that one of their more 
important advantages is that they make the understanding 
of the results easier, since confidence intervals show 
results in the same scale in which the measurement was 
obtained. Moreover, confidence intervals provide the 
necessary information for future meta-analyses (Fidler 
et al. 2006). However, it is important to correctly interpret 
the concept of confidence. In the case of traditional 
statistics, interpretations are based on the frequency of 
a specific result in many replicates (for this reason it is 
called “frequentist” in some textbooks), and where the 
true value of the parameter is fixed but unknown. So the 
probability that a particular interval contains the true value 
of the parameter is one or zero. In other words, this kind of 
interval does not say anything about the confidence of our 
particular result. The correct interpretation of a confidence 
interval of, for example, 95 % is that if the study were 
repeated many times, in 95 % of cases the interval would 
contain the real value of the parameter (Johnson 1999). A 
guide to confidence intervals use are Altman et al. (2000) 
and a series of articles by Geoff Cumming (Cumming and 
Finch 2005, Cumming 2007, 2009). 

• Range null hypotheses: Nickerson (2000) suggested that 
the use of point NHSTs should be changed to range NHSTs, 
where all the values in a range are considered to belong to 
the null hypothesis. In practice this is what most researchers 
believe that NHSTs do: there is a range of values around 
the value predicted by the null hypothesis whose difference 
could be considered negligible (Greenwald 1975). Among 
the advantages of this principle is the obligation of defining 
the direction and magnitude of the expected change in 
the focal parameter given the treatments, and with this 
information, incorporate the practical significance in the 
analysis of statistical significance. Range NHSTs are 
similar to the “good enough principle” proposed by Serlin 
and Lapsey (1985). This principle demands to define a 
priori what a “good difference” is, in order to support the 
working hypothesis. 

Other approaches. NHSTs are not the only methodology 
or philosophy that can be used to evaluate hypotheses in 
science. Other approaches may take a different theoretical 
framework, such as information theory, or a complete dif ­
ferent concept of probability, such as Bayesian methods. 
In the next paragraphs some of these approaches are ex­
amined. 

• Maximum likelihood and information criteria: as early as 

1890, Thomas C Chamberlain advocated the use of mul­
tiple working hypotheses instead of a single hypothesis. 
Using this approach, there is not a null hypothesis but 
several hypotheses, usually sustained in previous studies, 
which are evaluated in terms of their relative support in 
the data. This approach is called model selection or multi­
model inference in the specialized literature. 

Mathematical models are a very powerful tool that 
allows us to avoid the ambiguity of language and, 
through their use, make an exact description of our 
working hypothesis. If each hypothesis is represented 
by a mathematical model, the next step is to rank them 
according to their support in the data. It is in this context 
that the principle of maximum likelihood has an essential 
role. The principle (of which Fisher is considered the 
founder) states that among all the alternative hypotheses 
to explain a phenomenon, we must select the one that 
maximizes the probability of our data. 

In this approach the interest is in the likelihood of each 
hypothesis given the data, and this is proportional to the 
probability of the data given each hypothesis: 

L(H 0 | Data)∝ Pr(Data | H 0 ) [3] 

In general, we can compare the likelihood of several 
hypotheses through the likelihood ratio: 

L(H 0 | Data) [4] 
L(H1 | Data) 

The strength of the evidence in favor of H0 or H1 
depends on whether the value is greater or lesser than one 
(Goodman and Royal 1988, Goodman 1993). However, the 
use of a likelihood ratio test is restricted to nested models 
(Hilborn and Mangel 1997). To compare models that are 
not nested it is necessary to appeal to another type of 
analysis, in specific information criteria such as the Akaike 
information criterion (AIC) or the Bayesian information 
criterion (BIC or Schwarz information criterion). Next, we 
review the AIC and its relationship with Log likelihood. 

Akaike information criterion relates the concepts of 
Kullback-Leibler information and maximum likelihood 
(Anderson et al. 2000). Kullback-Leibler information is a 
concept from physics to measure the difference between 
reality and the model with which we try to approximate 
it (see Burnham and Anderson 2004, for a detailed 
description of this idea). Hirotsugu Akaike (1974) noticed 
that the Log likelihood of a model is an estimator of the 
Kullback-Leibler information, but biased. Nevertheless, 
he also realized that the bias was equal to the number 
of parameters of the model. Therefore, he defined his 
information criterion as: 

AIC = 2 K − 2Ln(L(Hi | Data)) [5] 

Where K is the number of parameters and L(Hi | Data) 
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is the likelihood of the model i given the data. Since the 
objective is to minimize the loss of information, the model 
with the smallest AIC has the highest support in the data. 

For a complete review of these and other criteria see 
Anderson et al. (2000), Burnham and Anderson (2002) 
and Burnham and Anderson (2004). Allometric equations 
to estimate biomass or volume in forest plantations or 
native stands, where we have several potential models to 
explain the phenomenon, are an interesting field to use 
these criteria. 

• Bayesian statistics. Among the alternative philosophies 
to frequentist methods, Bayesian statistics have shown 
the fastest development in the last decades. As it was 
previously reviewed, the Bayes theorem truly allows for 
evaluation of the probability of a hypothesis given the data. 

Pr(Data | H 0 )Pr(H 0 )Pr(H 0 | Data)= 
Pr(Data) [6] 

Also, sometimes Pr(H0) is unknown; therefore some a 
priori idea about its distribution is needed. This aspect 
of Bayesian inference has been considered its main 
disadvantage, because the a priori estimation of Pr(H0) 
could be very subjective. However, this disadvantage could 
at the same time be a major advantage. The estimation does 
not arise necessarily from nothing. Usually it is supported 
by a theoretical and empirical framework. For this reason, 
this approach is related in a better way to the logical bases 
of knowledge accumulation (Ellison 1996, Hobbs and 
Hilborn 2006). The previous studies allow us to have some 
degree of belief in our ideas, hypotheses or theories (in 
Bayesian statistics the probability is related to the level 
of belief in something, not in the long term frequency 
of expected outcomes).When we get a new data set, we 
update our degree of belief using preceding knowledge 
and the one obtained with the new study (Hobbs and 
Hilborn 2006). 

Almost every method developed in the framework 
of frequentist statistics has its counterpart in Bayesian 
methods, usually supported in Markov Chain Monte Carlo 
methods. It is not the objective of this paper to make a 
detailed review of this topic. For a general introduction 
we recommend the books by Carlin and Louis (2000) 
and Bolstad (2004), and three excellent books about the 
application of Bayesian methods to ecology are McCarthy 
(2005), Kéry (2010) and Link and Barker (2010). 

Conclusions or decisions. Especially for applied research, 
the analyst needs to evaluate several possible decisions 
and their consequences rather than hypotheses. It is in 
this context that the difference between conclusions 
and decisions becomes important, as Tukey (1960) 
explained. Conclusions are a final proposition reached 
after the evaluation of the evidence. For example, after 
an experiment about the influence of nitrogen on plant 
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growth, we can “conclude” that a higher concentration of 
nitrogen in the soil accelerates plant growth or increases 
plant productivity. On the other hand, a decision is the 
act of choosing among several alternatives, considering 
the advantages and disadvantages of each one, in order to 
achieve a specific objective. If, for example, to control an 
insect pest there are several control strategies or methods 
such as silvicultural, chemical or biological control, 
then we can “decide”, after considering advantages 
and disadvantages, to control the pest through a mix of 
silvicultural and biological control strategies. It is in cases 
similar to the later example when decision theory emerges 
as an efficient method to face these problems. 

• Decision theory and risk analysis: decision theory is 
focused not only on the probability of error but also on 
the cost function of these errors (Johnson 1999). Among 
the methodologies that use decision theory, risk analysis 
has many applications in prevention of biological 
invasions, pollution, species extinction, forest fires, 
and disease prevention, among others. Decision theory 
could be used in many situations in forest science, e.g. 
in harvesting decisions under different scenarios such 
as market fluctuations or regular pest outbreaks. Molak 
(1997) presents an excellent summary of the methods and 
applications of risk analysis, especially some chapters 
related to natural resources management. Hannson (1994) 
reviews the basic aspects of decision theory. 

WHY DO WE CONTINUE USING NHSTs? 

There has been considerable debate about the usefulness 
of NHSTs in some scientific areas during the last 40 years. 
In medical sciences for example, the editorial boards of 
many journals recommend the use of techniques different 
from NHSTs, i.e. the American Medical Association or 
the American Psychological Association (Cumming and 
Finch 2005, Fidler et al. 2006, ICMJE 2006). In spite 
of this, there are still areas where this debate is absent. 
In forest sciences the discussion has not been relevant. 
Few recent papers about the topic have been published 
in journals focusing on these areas. Only in 2007 was a 
discussion on this topic published in an ecological journal 
(Stephens et al. 2007, Gibbons et al. 2007, Martínez del 
Río et al. 2007). 

Much of the persistent use of NHSTs is probably due 
to the influence of the hypothetical-deductive method 
in scientific thinking (Hilborn and Mangel 1997). Two 
critics can be made in this point: first, this method has, in 
general, many weaknesses, in particular in sciences where 
maintaining the ceterius paribus condition is difficult or 
impossible (Hilborn and Mangel 1997). This is the case of 
forest sciences, where the researcher defines what fraction 
of the ecosystem, or eco-fraction, will be studied and 
generates the hypotheses that will be evaluated or validated 
through NHSTs or another method. In these areas it is more 
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important to measure the relative contribution of each 
potential cause than to evaluate a particular hypothesis 
independently (Quinn and Dunham 1983). Second, even 
if this philosophical framework is adequate for a particular 
situation (e.g. quality control), NHSTs do not meet the 
requirements of popperian falsifiability. According to 
Popper (1963), the most important demarcation criteria 
were that theories should be subjected to risky test. 
However, to test nil null hypotheses, which are almost 
always false, is not, in any case, risky (Fidler 2005, and 
references therein). 

Another characteristic associated to the hypothetical
deductive method that exerts a great influence in the 
persistence of NHSTs is dichotomous decision making. 
In most statistical methods courses, the emphasis is 
in whether or not the null hypothesis is rejected, as the 
classical hypothetical-deductive method prescribes. We 
really believe that if teaching emphasis changed from 
rejection (or not) of null hypothesis to the estimation 
of parameters and evaluation of uncertainty, then the 
understanding and appropriate use of classical and new 
statistical methods would increase among practitioners. In 
this direction, Fidler et al. (2004) advocate for a reform 
in teaching methods and editorial policies in ecological 
sciences in order to end the tyranny of p-values. 

Rozeboom (1960) suggested that researchers may be 
just users of methods without critical attitudes towards 
them. We agree with this statement only in part. Probably 
this is not the real situation, but it is the greatest risk. 
As professionals trained in the management of natural 
resources, foresters make decisions whose impacts are 
perceived by the whole society. It is important to remember 
that, despite the fact that it is impossible to be experts in 
every topic, it is necessary to take responsibility for each 
result or conclusion and to revise, lucidly and critically, 
the methods used so to avoid mistakes, without having to 
paralyze our work. 

CONCLUSIONS 

Through this review the extensive use of NHSTs in 
forest science is confirmed, despite the multiple flaws in its 
logical structure that several authors have demonstrated. 
The prevalence of NHSTs could have serious consequences 
for an efficient advance of forest science and industry. To 
avoid this, some available alternatives were presented, 
together with their scope and examples. 

Perhaps many of the readers will doubt the arguments 
given here, since they probably think that if these methods 
were wrong, then science and industry would not make 
progress as they do. Nevertheless, this reasoning is 
incomplete. The proficiency and capacity of scientists and 
professionals have managed to overcome these obstacles. 
The true question is if progress has been as fast as it could 
have been. The conclusion of this review seems to be that 
forest sciences have advanced in spite of the method. 
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