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SUMMARY

This study introduces the artificial neural networks (ANN) function to model relationship between diameter at breast height (dbh) and 
stump diameter and investigates the potential of ANN model to obtain the prediction of dbh. In total, 583 diameters at breast height-
stump diameter pairs were measured in 61 plots sampled from Crimean pine [Pinus nigra subsp. pallasiana] stands in ÇAKÜ Research 
Forest, Çankırı, Turkey. The network models, including the activation functions of function between input layer and hidden layer and 
pure-lin function between hidden layer and output layer (A6 alternative) with 12 # neurons, were found to the better predictive with 
lower error values including SSE (2585.3869), AIC (821.5731), BIC (825.7817), RMSE (2.2831), MSE (5.2125) and higher fitting 
value, such as R2

adj (0.9372), than those of other prediction methods. The best predictive ANN model resulted in the reductions of 
SSE, AIC, BIC, RMSE and MSE by 9.8486 %, 5.9018 %, 5.8735 %, 5.0519 % and 9.8486 %, and R2

adj in the increase of 0.7377 % 
as compared to those by the regression model. This present study has underlined the capability of the ANN model for predicting the 
relationship between dbh and stump diameter. This novel artificial intelligence technique provides a modeling alternative for forest 
managers to predict dbh required information for the management of forests.

Key words: stump diameter, diameter at breast height, Artificial Neural Network, Crimean pine.

RESUMEN

Este estudio presenta la función de redes neuronales artificiales (ANN) para modelar la relación entre el diámetro a la altura del pecho 
(dap) y el diámetro del tocón e investigar el potencial del modelo ANN para obtener la predicción de dap. Se midieron 583 diámetros 
totales en pares de altura del pecho-diámetro de tocón en 61 parcelas muestreadas de pino de Crimea [Pinus nigra subsp. pallasiana] 
del bosque experimental de ÇAKÜ, Çankırı, Turquía. Se encontró que el modelo de red que incluye las funciones de activación de 
la función entre la capa de entrada y la capa oculta y la función de -lin entre la capa oculta y la capa de salida (alternativa A6) con 
12 neuronas # fue mejor predictivo, con valores de error más bajos, incluyendo SSE (2585.3869), AIC (821.5731), BIC (825.7817), 
RMSE (2.2831), MSE (5.2125) y valores de ajuste más altos, como R2

adj (0.9372), que los de otros métodos de predicción. El mejor 
modelo predictivo de ANN resultó en la reducción de SSE, AIC, BIC, RMSE y MSE en 9.8486 %, 5.9018 %, 5.8735 %, 5.0519 % 
y 9.8486 %, y R2

adj con aumento de 0.7377 %, en comparación con los modelo de regresión. Este estudio subraya la capacidad del 
modelo ANN para predecir la relación entre dap y el diámetro del tocón. Esta novedosa técnica de inteligencia artificial proporciona 
una alternativa de modelado para que los administradores forestales predigan la información requerida sobre dap para el manejo de 
los bosques.

Palabras clave: diámetro del muñón, diámetro a la altura del pecho, Red Neural Artificial, pino de Crimea.

INTRODUCTION

The individual diameter at breast height (dbh) is im-
portant to forest managers and biometricians for forest in-
ventory, because dbh can be used for obtaining total and 
merchantable volume, biomass and carbon estimations and 
developing growth and yield models (Soares and Tomé 
2002). The measurements of dbh have lower cost, are less 

difficult and more precise than other tree attributes, tree 
height and crown diameter in forest inventory applications 
(Avery and Burkhart 2001). In some forest operations 
such as timber cuttings or unrecorded data from harvested 
stands, dbh of harvested trees cannot be measured at breast 
height, 1.3 meter. In these circumstances, the stump diame-
ter, measured at 0.3 m, remains as an indicator of the volu-
me of individual harvested trees (Corral-Rivas et al. 2007).  

mailto:msenyurt@karatekin.edu.tr
mailto:muammer1907@gmail.com
mailto:ilkerercanli@karatekin.edu.tr
mailto:alkangunlu18@gmail.com
mailto:fbolat@karatekin.edu.tr
mailto:sbulut@karatekin.edu.tr


BOSQUE 41(1): 25-34, 2020
Comparision regression models and ANN to predict dbh

26

The stump diameter can be merely measured in these fo-
rest areas, and the tree volume and other dendrometric tree 
attributes can be estimated using the stump diameter mea-
surements (Curtis and Arney 1977). Thus, the relationship 
between dbh and stump diameter can be assessed as an 
alternative solution to this difficult situation. It is common 
practice that dbh is first predicted by using the stump dia-
meter, which is directly measured at some trees, and af-
terwards the tree volume and other tree attributes can be 
calculated by using this estimated dbh (Parresol 1998). 

As a result of the importance of these relations in the 
forest inventory, many studies with the graphical analy-
sis date back to the 1940s (Rapraeger 1941). From 1960s, 
the linear regression analysis, based on the ordinary least 
squares parameter method, was used to model these rela-
tionships between dbh and stump diameter (Myers 1963). 
These linear regression models require some statistical as-
sumptions: independent, normally distributed and homos-
cedastic residuals and no multicollinearity among varia-
bles or no spatial and longitudinal autocorrelations in data. 
In the relationship between the stump diameter and dbh, 
it is possible to achieve a nested stochastic data structure 
(stand and plot), which can cause a lack of independence 
among diameter measurements with highly correlated data 
obtained from different sample plots (West et al. 1984, 
Gregoire 1987). It is due to this fact that these relations-
hips between the dbh and the stump diameter measured 
significantly depend on stand structures, where these stand 
conditions can be differentiated with site quality, stand 
density and stand ages. The violation of this assumption 
including a deficiency of independence among diameter 
measurements resulted in the correlated errors in model 
estimations, and the biased estimations of the confidence 
intervals of these model parameters (Searle et al. 1992), 
and therefore the hypothesis tests and statistical inferences 
for the developed models, may be invalid (Gregoire 1987). 

As an alternative method to solve the autocorrelation 
problem in these data, Artificial Neural Networks (ANNs), 
a subset of artificial intelligence, may be a prevailing 
and operative tool for fitting the relationship between the 
stump diameter and diameter at breast height without the 
restrictive assumptions of a particular statistical models. 
ANNs are a type of artificial intelligence applications ins-
pired from human brain. Thus, ANNs have fitting capabi-
lity to model compound and nonlinear networks of natural 
systems without these statistical functions (Atkinson and 
Tatnall 1997). ANN models have been effectively used in 
different areas and many circumstances for modeling com-
plex nonlinear relationship. In forestry, some prediction 
models based on ANNs have been developed to predict 
tree volume (Özçelik et al. 2010), tree taper (Diamanto-
poulou 2005b), total tree height (Özçelik et al. 2013), bark 
volume (Diamantopoulou 2005a), Biomass prediction 
(Özçelik et al. 2017), basal area and volume increment 
growth model (Ashraf et al. 2013) and diameter distribu-
tion (Diamantopoulou et al. 2015). Besides all these stu-

dies predicting various tree and stand attributes, there are 
no studies using ANN models to predict the relationship 
between the stump diameter and diameter at breast height 
and comparing this new prediction method with classical 
linear and nonlinear regression. Thus, the objective of this 
study is to develop and evaluate ANN models to predict 
diameter at breast height from stump diameter for Crimean 
pine [Pinus nigra Arnold. subsp. pallasiana (Lamb.) Hol-
mboe] stands located in ÇAKÜ Research Forest.

METHODS

Material. The data for this study were obtained from 
Çankırı Karatekin University (ÇAKÜ) Forest Faculty 
Research and Application Forest located at the Çankırı 
Planning Unit, Çankırı Forest Enterprise, Ankara Regional 
Directorate of Forestry, Turkey (figure 1). The total area 
is 367 ha (363.5 ha are forest and 3.5 ha are openings in 
forests). According to the management plan, it consists of 
Çka-Çkc2-Çkc3-Çkcd1-Çkab3-Çkb3-ÇkÇsbc3-ÇkÇsab3-
ÇkÇsa-BÇk stands [Çk: Pinus nigra Çs: Pinus sylvestris L, 
a (0-7,9 cm), b (8-19,9 cm), c (20-35,9 cm), d (36-51,9 cm) 
Development stages, 1(11-40 %), 2 (41-70 %), 3 (71-100 %):  
Crown closure, B: Degraded forest, Çkc3: Crimean 
pine stand, nature development stage (20-35.9 cm), full  
coverage. (71-100 %)].

In these Crimean pine stands, 61 sample plots were 
subjectively selected to represent various stand condi-
tions such as site quality, age and stand density. The size 
of circular plots ranged from 0.04 to 0.08 ha, depending 
on stand density to achieve a minimum of 30-40 trees in 
a sample plot. In each sample plot, individual diameter at 
breast height (dbh) and stump diameter at 0.3 m stump 
height were measured to the nearest 0.1 cm with calipers 
for every living tree with dbh > 4.0 cm. The measurements 
from living trees without forked and defective broken tops 
with no obvious evidence of any damages were carried 
out, and these measurements were included in the statis-
tical analysis in later stages of the study. Thus, 583 dbh-
stump diameter pairs were used to develop statistical mo-
dels. These data were randomly split into two data sets, the 
model fitting and the validation data set. Of those, about 85 
% (497 trees) were used to fit regression model and to train 
these ANNs models. The remaining 86 trees were reser-
ved for the validations to evaluate these network models. 
The minimum, maximum, mean and standard deviations 
for training and validation data were calculated (table 1). 
Figure 2 presented the relationship between diameter at 
breast height and stump diameter for training data (A) and 
validation data (B)

Regression analysis models. To determine the relationship 
between dbh and stump diameters, the following regression 
equations are fitted by using dbh /stump diameter pairs:

Linear:                                                                         [1]𝑑𝑑1,3=𝑏𝑏0 + 𝑏𝑏1𝑑𝑑0,3 
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Figure 1. Location of study area.
 Ubicación del área de estudio.

 

Table 1. Summary statistics for sample trees originated from fitting and validation data.
 Resumen de estadísticas para los árboles de muestra originadas a partir de datos de ajuste y validación.

Variables Min. Max. Mean Std. deviation

Training data dbh (cm) 9.20 67.00 27.15 9.11

Stump diameter (cm) 12.30 74.00 33.33 10.10

Validation data dbh (cm) 9.40 53.50 29.75 11.41

Stump diameter (cm) 13.00 64.00 36.15 12.78

Quadratic:                            [2]

Logarithmic:                                                             [3]

Power:                                                                          [4]

S:                                                                          [5]

Compound:                                                                          [6]

Inverse:                                                                               [7]

Exponential:                                                                      [8]

Growth:                                                                  [9]

Where, d1.3: diameter at breast height, d0.3: stump diameter, 
b0, b1 and b2 are the regression model parameters. Curve 
Estimation Regression Procedure, available in SPSS ver-
sion 12.0 (SPSS Institute Inc. 2010), was used to model 
the relationship between the stump diameter and the dia-
meter at breast height and obtain the parameter predictions 
of these functions. The estimate of each parameter for va-
riables of these regression models should be statistically 
significant at 95 % probability level.

𝑑𝑑1,3=𝑏𝑏0 + 𝑏𝑏1𝑑𝑑0,3 + 𝑏𝑏2𝑑𝑑0,3² 

𝑑𝑑1,3=𝑏𝑏0 + 𝑏𝑏1𝑙𝑙𝑙𝑙𝑑𝑑0,3 

𝑑𝑑1,3 = 𝑏𝑏0. 𝑏𝑏1𝑑𝑑 

𝑑𝑑1,3 = 𝑒𝑒(𝑏𝑏0+
𝑏𝑏1
𝑑𝑑 ) 

𝑑𝑑1,3 = 𝑏𝑏0. 𝑏𝑏1𝑑𝑑0,3 

𝑑𝑑1,3 = 𝑏𝑏0. (
𝑏𝑏1
𝑑𝑑0,3

) 

𝑑𝑑1,3 = 𝑏𝑏0. 𝑒𝑒𝑏𝑏1.𝑑𝑑0,3 

𝑑𝑑1,3 = 𝑒𝑒(𝑏𝑏0+𝑏𝑏1𝑑𝑑0,3) 
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Figure 2. The relationship between diameter at breast height and stump diameter for training 

data (a) and validation data (b) 
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Figure 2. Relationship between diameter at breast height and stump diameter for training data (A) and validation data (B).
 Relación entre el diámetro a la altura del pecho y el diámetro del tocón para los datos de entrenamiento (A) y de validación (B).

Artificial neural network models. As another alternative 
prediction technique, Artificial Neural Network (ANN), 
based on the feed forward backprop training algorithm 
with training function of Levenberg-Marquardt, was used 
to model the relationship between the stump diameter and 
the diameter at breast height. In ANN training process, the 
input variable was the tree stump diameters and the tar-
get variable was the tree diameter at breast height, which 
were measured at sample trees. This network structure can 
include three layers such as input layer, hidden layer and 
output layer. Correspondingly, some activation functions 
with hyperbolic tangent sigmoid (tan-sig), logistic sigmoid 
function (log-sig) and linear function (Pure-lin) connect 
the network layers. These network structure parameters 
have significant effects on fitting performance of neural 
network. In this study, alternatives including some activa-
tion functions in the connection between input, hidden and 
output layers were compared to decide the best predictive 
one: (A1) tan-sig function between input layer and hidden 
layer and tan-sig function between hidden layer and out-
put layer, (A2) tan-sig function between input layer and 
hidden layer and log-sig function between hidden layer 
and output layer, (A3) tan-sig function between input la-

yer and hidden layer and pure-lin function between hidden 
layer and output layer, (A4) log-sig function between in-
put layer and hidden layer and log-sig function between 
hidden layer and output layer, (A5) log-sig function bet-
ween input layer and hidden layer and tan-sig function bet-
ween hidden layer and output layer, (A6) log-sig function 
between input layer and hidden layer and pure-lin function 
between hidden layer and output layer, (A7) pure-lin 
function between input layer and hidden layer and pure-
lin function between hidden layer and output layer, (A8) 
pure-lin function between input layer and hidden layer and 
log-sig function between hidden layer and output layer 
and (A9) pure-lin function between input layer and hidden 
layer and tan-sig function between hidden layer and out-
put layer. In some preliminary analyses for these alterna-
tives, A2, A4 and A8 including log-sig function between 
hidden layer and output layer resulted in non-convergence 
of ANN models, thus these three alternatives were exclu-
ded from the comparisons and evaluations in this study. 
Another important parameter of the network structure is 
the number of neurons in hidden layers. Thus, some al-
ternatives for the number of neurons which ranged from 
1 to 20; 1, 2, 3, ……16, 17, 18, 19 and 20 neuron number 
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were compared to determine the best predictive one in this 
study. As a result, a total of 120 network alternatives inclu-
ding 20 neuron number and 6 transfer function alternatives 
(20 X 6 = 120 alternatives) based on the feed forward bac-
kprop training algorithm were trained and used to obtain 
the stump diameter predictions. All these alternatives for 
training ANN models were carried out using MATLAB-
nntool module (MATLAB 2014). 

Comparisons of prediction models. These prediction 
models including the regression models and ANN models 
were compared based on goodness-of-fit statistics of Sum 
of Squared Errors (SSE), Akaike’s Information Criterion 
(AIC), Bayesian Information Criterion (BIC), Root Mean 
Square Error (RMSE), Mean Squared Error (MSE) and 
Adjusted Coefficient of Determination (R2

adj). Values of 
SSE, MSE, RMSE, AIC and BIC are desired to be close 
to 0, while the R2

adj close to 1. The formulas for these 
statistical values are provided below:

           MSE    [10]     

     RMSE    [11]                                   

           SSE    [12]

             R²adj      [13]

                                AIC = -2Log(L)+2p   [14]

                           BIC = -2Log(L)+plog(n) [15] 

In the formulae listed above:  = calculated dbh;  = 
estimated dbh;  = mean dbh; n = number of data; L = 
maximum value of the log likelihood function; p = number 
of parameters within the model.

RESULTS

The values of goodness-of-fit statistics with SSE, 
AIC, BIC, RMSE, MSE and R2

adj for the best predictive 
six Artificial Neural Network models selected from va-
rious number of neurons and nine regression equations 
were given in table 2. For the prediction methods, SSE 
varied from 2585.3869 to 9415.1578, AIC from 821.5731 
to 1463.9186, BIC from 825.7817 to 1468.1272, RMSE 
from 2.2831 to 4.3569, MSE from 5.2125 to 18.9822, R2

adj 

=  ∑ (di-dî)
2

n-p

n

i = 1
 

=  √∑ (d𝑖𝑖 − dî)
2

n − p

n

i = 1
 

=  ∑(d𝑖𝑖 − dî)
2

n

i = 1
 

=  1 −
∑ (d𝑖𝑖 − dî)

2n
i = 1 (n − 1)

∑ (di − d̅i)
2n

i = 1 (n − p)
 

from 0.7712 to 0.9372. Comparing these goodness-of-fit 
statistics for all prediction methods, the network model 
--including the activation functions of log-sig function 
between input layer and hidden layer and pure-lin function 
between hidden layer and output layer (A6 alternative) 
with 12 # neurons-- was found to be the best predictive 
model with lower error values including SSE (2585.3869), 
AIC (821.5731), BIC (825.7817), RMSE (2.2831), MSE 
(5.2125) and higher fitting value such as R2

adj (0.9372) 
than those of other prediction methods. Based on these fit 
statistics, the ANN models commonly presented better sta-
tistics including the lower error statistics (SSE, AIC, BIC, 
RMSE and MSE) with higher R2

adj than those by these re-
gression models (table 2). 

In tables 3 and 4, mean values of these goodness-of-
fit statistics for alternatives including different activation 
functions and the numbers of neurons were presented to 
evaluate the effect of the type of activation functions and 
the number of neurons on stump diameter prediction errors 
from 120 various alternatives. On the basis of these good-
ness-of-fit statistics, the activation function alternative in-
cluding pure-lin function between input layer and hidden 
layer and pure-lin function between hidden layer and 
output layer, assigned as A7 alternative, has better mean 
predictive ability with SSE (2888.7948), R2

adj (0.9298), 
MSE (5.8242), RMSE (2.4133), AIC (876.7145), BIC 
(880.9231) than with the other ANN alternatives based on 
different activation functions. For the alternatives inclu-
ding the number of neurons, better error and fitting statis-
tics were obtained by 12 neurons with SSE (2804.5983), 
R2

adj (0.9318), MSE (5.6544), RMSE (2.3770), AIC 
(861.2462), BIC (865.4548) than with the other ANN mo-
dels based on the numbers of neurons. 

Figure 3 including the RMSE values visually explica-
ted these evaluations based on the comparisons of various 
network model alternatives including different activation 
functions of the numbers of neuron in network architec-
ture. As seen in figure 3, the activation function alternati-
ves including A7 (pure-lin and pure-lin) and A9 (pure-lin 
and tan-sig) presented monotonous trend according to the 
change of number of neurons from 1 to 20, however other 
activation function alternatives including A1, A3, A5 and 
A6 showed unstable and inconsistent change in accordan-
ce with the number of neurons. 

Figure 4 presented the plot of residuals against 1-la-
gged residuals by the quadratic nonlinear regression model 
(A) and the best predictive network model including the 
activation functions of log-sig function between input la-
yer and hidden layer and pure-lin function between hidden 
layer and output layer (A6 alternative) with 12 # neurons 
(B). This plot verified the improvement on the autocorre-
lation problem by this best predictive ANN model; thus, 
the ANN model gave no trends in this lag-1 residuals as a 
function of diameter-lag-1 residuals and this visual finding 
emphasized the no-autocorrelation problems for the height 
predictions by this network model (4B).   
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Table 2. Fit statistics including SSE, AIC, BIC, RMSE, MSE and R2
adj for the best predictive ANNs models of the number of neuron 

alternatives regarding the numbers of transfer functions and regression models.
 Ajuste de las estadísticas que incluyen: SSE, AIC, BIC, RMSE, MSE y R2

adj para los mejores modelos predictivos de ANN del número de 
alternativas neuronales con respecto al número de funciones de transferencia y modelos de regresión.

Alternatives for the 
activation function and 

regression equations

Alternatives for 
the number of 

neuron
SSE AIC BIC RMSE MSE R2

adj

A1 17 2616.5215 827.5225 831.7311 2.2968 5.2752 0.9364

A3 8 2606.3625 825.5890 829.7976 2.2923 5.2548 0.9367

A5 11 2602.0358 824.7633 828.9719 2.2904 5.2460 0.9368

A6 12 2585.3869 821.5731 825.7817 2.2831 5.2125 0.9372

A7 5 2878.8979 875.0167 879.2253 2.4092 5.8042 0.9300

A9 10 3089.5997 910.1218 914.3304 2.4958 6.2290 0.9249

Linear 2878.6920 874.9811 879.1897 2.4091 5.8038 0.9300

Quadratic 2867.8271 873.1018 877.3104 2.4046 5.7819 0.9303

Logarithmic 4523.2163 1099.5691 1103.7777 3.0198 9.1194 0.8901

Power 2904.3364 879.3890 883.5976 2.4198 5.8555 0.9294

S 5235.4443 1172.2446 1176.4532 3.2489 10.5553 0.8728

Compound 7982.2711 1381.8649 1386.0735 4.0116 16.0933 0.8060

Inverse 9415.1578 1463.9186 1468.1272 4.3569 18.9822 0.7712

Exponential 7982.2711 1381.8649 1386.0735 4.0116 16.0933 0.8060

Growth 7982.2711 1381.8649 1386.0735 4.0116 16.0933 0.8060

Table 3. Average values of the fit statistics, including SSE, AIC, BIC, RMSE, MSE and R2
adj, for transfer function alternatives.

 Valores medios de las estadísticas de ajuste, incluidos SSE, AIC, BIC, RMSE, MSE y R2
adj, para las alternativas de las funciones de 

transferencia.

Alternatives of the 
activation functions SSE AIC BIC RMSE MSE R2

adj

A1 2894.7243 875.8878 880.0964 2.4135 5.8361 0.9297

A3 3016.9312 896.3101 900.5187 2.4638 6.0825 0.9267

A5 3016.7059 894.7089 898.9175 2.4617 6.0821 0.9267

A6 3028.8102 896.3041 900.5127 2.4662 6.1065 0.9264

A7 2888.7948 876.7145 880.9231 2.4133 5.8242 0.9298

A9 3097.0908 911.3240 915.5326 2.4988 6.2441 0.9247

In addition to evaluations including fitting abilities 
of the best predictive ANN model, this ANN model was 
further evaluated based on the equivalence test procedure 
(Robinson and Froese 2004, Robinson et al. 2005) inclu-
ding validation dataset, 86 trees. This dataset, as indepen-
dent data, was not used in training this ANN model. The re-
sults of the equivalence test including predicted bootstrap 
b0 and b1 limits for simulation data are presented in table 5. 

In these ANN models, the null hypotheses of dissimilarity 
for intercept (b0) and slope (b1) parameters were rejected 
by equivalence tests. The bootstrap intercept (b0) b0 and 
slope (b1) parameters were contained within the equivalent 
regions, y ̅±10 % and 1±10 %. Thus, the equivalence tests 
validated the best ANN models including the alternatives 
for the activation functions and numbers of neurons to the 
simulation data set. 
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Table 4. Mean values of fit statistics, including SSE, AIC, BIC, RMSE, MSE and R2
adj, for the alternatives of number of neuron.

 Valores medios de las estadísticas de ajuste, incluidos SSE, AIC, BIC, RMSE, MSE y R2
adj, para las alternativas de número de neuronas.

Alternatives of the 
number of neurons SSE AIC BIC RMSE MSE R2

adj

1 2900.4352 878.4690 882.6776 2.4179 5.8477 0.9295

2 2902.6738 878.4685 882.6771 2.4183 5.8522 0.9295

3 2971.7293 889.7738 893.9824 2.4465 5.9914 0.9278

4 2885.4616 875.7165 879.9251 2.4114 5.8175 0.9299

5 2885.7076 875.8581 880.0666 2.4116 5.8180 0.9299

6 2903.5711 877.3380 881.5466 2.4171 5.8540 0.9294

7 2987.4870 892.0632 896.2718 2.4525 6.0232 0.9274

8 3018.9227 896.4391 900.6477 2.4644 6.0865 0.9266

9 3030.8153 899.2048 903.4133 2.4702 6.1105 0.9264

10 2839.2825 867.1790 871.3875 2.3914 5.7244 0.9310

11 3029.1835 895.8786 900.0872 2.4657 6.1072 0.9264

12 2804.5983 861.2462 865.4548 2.3770 5.6544 0.9318

13 3072.5311 906.1796 910.3882 2.4874 6.1946 0.9253

14 3199.4652 925.1315 929.3400 2.5368 6.4505 0.9223

15 3283.1450 936.4101 940.6187 2.5676 6.6192 0.9202

16 3119.8375 913.8112 918.0197 2.5065 6.2900 0.9242

17 2881.2027 874.2714 878.4800 2.4088 5.8089 0.9300

18 3014.2092 896.2491 900.4577 2.4632 6.0770 0.9268

19 3158.3249 920.5215 924.7300 2.5227 6.3676 0.9233

20 3130.8565 913.2117 917.4203 2.5080 6.3122 0.9239

Figure 3. Variation of RMSE of a total of 120 trained ANN models, including transfer functions and number of neurons. 
 Variación de RMSE de un total de 120 modelos ANN entrenados, que incluyen varias funciones de transferencia y número de neuronas.
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Figure 4. The plot of residuals against 1-lagged residuals obtained from the quadratic nonlinear regression (A) and the best predictive 
network model (B).
 Gráfica de los residuos frente a los residuos rezagados obtenidos de la regresión no lineal cuadrática (A) y el mejor modelo predictivo de 
red (B).
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Table 5.  The results of equivalence tests for the ANNs including some alternatives such as the activation functions and the number of 
neuron.
 Resultados de las pruebas de equivalencia para los ANN que incluyen algunas alternativas como las funciones de activación y el número de 
neuronas.

Alternatives 
for the 

activation 
function 

Alternatives 
for the 

number of 
neuron 

b0 limits Bootstrap b0 limits b1 limits Bootstrap b1 limits

Lower Upper Lower Upper H0: not 
Equivalent Lower Upper Lower Upper H0: not 

Equivalent

A1 3 25.2835 34.2072 29.2248 30.2895 Rejected 0.8500 1.1500 0.9062 1.0189 Rejected

A3 4 25.2835 34.2072 29.1788 30.3246 Rejected 0.8500 1.1500 0.8634 1.0070 Rejected

A5 5 25.2835 34.2072 29.2060 30.3036 Rejected 0.8500 1.1500 0.9106 1.0239 Rejected

A6 12 25.2835 34.2072 29.1342 30.3032 Rejected 0.8500 1.1500 0.8534 1.0175 Rejected

A7 7 25.2835 34.2072 29.2646 30.3136 Rejected 0.8500 1.1500 0.9522 1.0559 Rejected

A9 8 25.2835 34.2072 29.2117 30.3250 Rejected 0.8500 1.1500 0.9322 1.0477 Rejected

DISCUSSION

In this study, artificial neural network (ANN) mode-
lling technique has been applied based on its ability to 
discover relationships between diameter at breast height 
and stump diameter from data without the requirement 
of statistical assumptions including a deficiency of inde-
pendence among diameter measurements, also called as 
autocorrelation problem in these data. To choose the best 
predictive architecture of ANN models, different alternati-
ves for the numbers of neurons from 1 to 20 and six trans-
fer functions, a total of 120 ANNs models, were trained 
and evaluated by comparing some fit statistics with SSE, 
AIC, BIC, RMSE, MSE and R2

adj. Based on these all fit 
statistics, the ANN models gave better predictive results 

with lower values for SSE, AIC, BIC, RMSE and MSE 
and higher value for R2

adj than those given by nonlinear 
regression techniques. Especially, the best predictive ANN 
model based on the network architecture with the activa-
tion functions of log-sig function between input layer and 
hidden layer and pure-lin function between hidden layer 
and output layer (A6 alternative) with 12 # neurons resul-
ted in the reductions of SSE, AIC, BIC, RMSE and MSE by 
9.8486 %, 5.9018 %, 5.8735 %, 5.0519 % and 9.8486 %,  
and R2

adj in the increase by 0.7377 % as compared to those 
by the quadratic regression model. Considering these fit 
statistics by the best predictive ANN model, the impro-
vement in these scores was obtained in limited values 
ranging from 1 % to 10 %. However, the best predictive 
results for the best predictive ANN model were confir-
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med by the lag-graphics with non-trends in residuals as 
a function of age-lag residuals, in which indicates better 
solution to the autocorrelation problem in height predic-
tions than those by nonlinear regression technique. These 
fitting enhancements with non-autocorrelation problems in 
dbh predictions offered that the ANNs models should be 
taken into account and given significance since they are 
alternatives and novel prediction techniques according to 
the nonlinear regression techniques. Prominently, these fit-
ting improvements in height predictions suggested that the 
ANN models can be an alternative to the nonlinear regres-
sion techniques, such as NLA and NLME. The results of 
this study are consistent with those from Hasenauer et al. 
(2001), Diamantopoulou (2005ab), Özçelik et al. (2010, 
2017), Leite et al. (2011), Soares et al. (2011), Ashraf et 
al. (2013), Diamantopoulou et al. (2015), especially height 
predictions by Özçelik et al. (2013).

The results of ANN models can be further evaluated 
to decide optimum network architecture from some alter-
natives of the numbers of different transfer functions and 
numbers of neuron alternatives. From different transfer 
functions and numbers of neuron alternatives, the transfer 
functions have significant effect at the fit statistics for dbh; 
however, the important trend according to the numbers of 
neurons was not obtained in fitting ability. Generally, in-
crease in the numbers of neurons resulted in higher error 
values and lower R2

adj and 15 # neurons gave worst error 
values for dbh predictions. It may be due to the fact that 
an increase in the numbers of neurons has negative effect 
over ability of convergence for the ANN models and it is 
considered that more simple network models with a small 
number of neurons can produce better predictive results 
for dbh. For this relationship between dbh and stump dia-
meter, the log-sig transfer function between input layer 
and hidden layer and the pure-lin function between hidden 
layer and output layer (A6 alternative) provide better in-
formation for predicting these relations and consequently 
gave superior predictions for dbh than those of other net-
work structure. For other transfer function alternatives, 
the network models including various transfer functions 
should be evaluated by training various tree and forest at-
tributes. It will be an important assessment for choosing 
the best predictive ANN model from numerous network 
alternatives.

When literature regarding the modeling of stump 
diameter-dbh is evaluated, regression models can suc-
cessfully predict the individual dbh. This study examined 
whether ANN models, as a new technique, can be conside-
red as an alternative approach to classical regression mo-
dels to predict dbh. When the results obtained from this 
study are evaluated, ANN models are relatively more suc-
cessful than the regression models. While previous studies 
on ANN models provide results for estimating many single 
tree and stand characteristics, this study innovatively exa-
mined the possibilities of using ANN models for estima-
ting dbh from stump diameter. 

This ANN developed in this study is appropriate to fo-
rest managers for predicting unmeasured tree diameter at 
breast height in certain circumstances, e.g. illegal timber 
activities or unrecorded data from harvested stands, and 
then the volume or biomass estimation of these cut trees 
can be carried out by using the predicted dbh for these stu-
died stands. Thus, the volume or biomass for these lost 
trees can be calculated by using their predicted dbh. These 
ANN models may be an important tool to calculate lost 
biomass by illegal forest cutting in forest management 
planning and forest inventory studies. This present study 
has emphasized the ability of ANN models for predicting 
the relationship between dbh and stump diameter. These 
ANN models may represent an important tool in forest 
management planning and biomass evaluations of these 
studied stands located in Turkey.
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