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SUMMARY

One of the most important issues in forest management is preservation and development of biodiversity. This study aims at estimating 
richness, evenness and species diversity of woody plants in Arasbaran Protected Area (East Azerbaijan Province, Iran) using Landsat 
8 OLI satellite images based on Multiple Linear Regression (MLR) and Classification and Regression Trees (CART) models. This 
study was performed in an elevation range of 1,000 - 1,850 m. A total of 130 samples were selected based on physiographic factors. 
In each sampling plot, number and type of dominant tree species in the canopy were recorded. Statistical modeling was carried out by 
calibrating MLR and CART models. The R-squared values of MLR models were in the range of 0.10 - 0.24 for predicting richness, 
evenness and Shannon and Simpson’s species diversity indices based on greenness as the only predictor variable (other variables were 
excluded from MLR models). The R-squared values of CART models were equal to 0.21, 0.42, 0.41 and 0.42, respectively. Validation 
of the results indicated that the CART model had a relatively better performance compared to MLR model. Overall, both methods 
could not estimate species richness and diversity very precisely based on Landsat 8 OLI Satellite data in the region suggesting the 
necessity to use high-resolution satellite data for the best evaluation of forests diversity indices in mountainous forests.

Key words: Arasbaran, Biodiversity, Image processing, Remote sensing, Iran.

RESUMEN

Una de las preocupaciones más importantes en la gestión forestal es la preservación y el desarrollo de la biodiversidad. Este estudio 
pretende estimar la riqueza, la uniformidad y la diversidad de especies de plantas leñosas en el Área Protegida de Arasbaran (provincia 
de Azerbaiyán Oriental, Irán) a partir de imágenes del satélite Landsat 8 OLI y usando modelos de Regresión Lineal Múltiple (MLR) y 
Árboles de Regresión y Clasificación (CART). En un rango de elevación de 1.000 - 1.850 m, se seleccionaron un total de 130 muestras 
basadas en factores fisiográficos. En cada parcela de muestreo se registró el número y tipo de especies arbóreas dominantes en el dosel. 
La modelización estadística se llevó a cabo mediante la calibración de los modelos MLR y CART. Los valores de R-cuadrado de los 
modelos MLR estaban en el rango de 0,10 - 0,24 para predecir la riqueza, la uniformidad y los índices de diversidad de especies de 
Shannon y Simpson basados en el verdor como única variable predictora (otras variables fueron excluidas de los modelos MLR). Los 
valores de R-cuadrado de los modelos CART fueron iguales a 0,21, 0,42, 0,41 y 0,42, respectivamente. La validación de los resultados 
indicó que el modelo CART tenía un mejor rendimiento relativamente en comparación con el modelo MLR. En general, ningún 
método pudo estimar la riqueza y diversidad de especies con mucha precisión basándose en los datos del satélite Landsat 8 OLI en la 
región, lo que sugiere la necesidad de utilizar datos de satélite de alta resolución para la mejor evaluación de los índices de diversidad 
en los bosques de montaña.

Palabras clave: Arasbaran, Biodiversidad, Procesamiento de imágenes, Teledetección, Irán.

INTRODUCTION

In recent decades, the decrease in species diversity 
has become one of key ecological problems (Iordan et al. 
2018). Species diversity plays an important role in the sta-
bility of  forest ecosystems, because the presence of more 
species in an area will support a more complex structure 

of natural ecosystems, which is known to be more sustai-
nable to changes in environmental conditions (Garet et al. 
2012). The most important component of species diversi-
ty is species richness. The other component is evenness, 
which is related to individual’s frequency distribution 
among species. The combination of the two concepts of ri-
chness and evenness indicate the species diversity (Morris 
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et al. 2014). Recording plant species richness and diversi-
ty on the landscape scale often requires considerable time 
and effort (Warren et al. 2014). Remote sensing images 
introduce a considerable potential to supervise and predict 
biodiversity on many spatial and temporal scales and to 
provide valuable information on biodiversity distribution. 
Compared to other data collection methods, remote sen-
sing techniques provide specific capabilities due to their 
characteristics, such as integration, repetition and a per-
fect spatial cover for large areas (Rocchini et al. 2016). 
Data obtained by remote sensing images with adequate 
spectral resolution could determine richness and diversi-
ty of plant species, although identification of appropriate 
spectral bands and their combinations is challenging (Peng 
et al. 2018). Applications of remote sensing in biodiver-
sity research mainly focus on establishing the nature of 
the relationships between spectral information of satelli-
te images and tree species diversity measured in the field 
(Madonsela et al. 2018). The use of satellite data, such 
as Landsat imagery, provides the advantage of using fre-
quent multi-spectrum observations presenting acceptable 
and satisfactory skills for spatial estimation of biodiversity 
(Dube et al. 2019). Considering large archive and radio-
metric consistency, Landsat images can be used to analyze 
changes in biodiversity over long periods (Savage et al. 
2015). The potential advantages of Landsat imagery for 
estimating tree species provide a promising tool for biodi-
versity monitoring (Machado et al. 2019). Several studies 
have used remote sensing data to estimate richness, even-
ness and species diversity. For example, Mohammadi  and  
Shataee (2010) studied the relationships between species 
diversity index and spectrum values of Landsat ETM+ for 
the Hyrcanian forests (Iran). Likewise, Sivanpillai et al. 
(2006) analyzed the relationship between ETM+ reflective 
values and quantitative characteristics of loblolly pine (Pi-
nus taeda) in East Texas in the United States. Tessler et al. 
(2016) studied the effects of the repeated fires on species 
diversity using Landsat 7 images in the Mediterranean fo-
rests and showed a huge change in vegetation diversity. In 
addition, Warren et al. (2014) investigated the relationship 
between image spectral value and plant species richness 
and diversity using IKONOS satellite images. The results 
illustrated that despite high spatial resolution of IKONOS 
satellite images, diversity was only estimated at a medium 
level that mainly depended on its low spectral resolution. 
Different statistical algorithms were applied to evaluate 
relationships between diversity indices as dependent and 
spectral data extracted from satellite images as indepen-
dent variables in different studies.

Classification And Regression Trees (CART) and Mul-
tivariate Linear Regression models (MLR) algorithms 
have been widely used to evaluate these relationships 
(Mohammadi and Shataee 2010). The CART algorithm 
is a non-parametric modeling approach that recursively 
partitions the data to find increasingly homogeneous sub-
sets (Mohammadi and Shataee 2010). However, CART 

is sensitive to small variations in training dataset, which 
could cause instability in variable selection and could 
adversely impact the predictive performance of the final 
model (Meng et al. 2016). The MLR method, as a parame-
tric modeling method, has been commonly employed in 
forestry research. Although, this statistical technique has 
been criticized for its limitations, such as assumptions of 
both linearity and independence between variables (Dye 
et al. 2012). Therefore, there is a need to conduct studies 
to compare CART and MLR algorithms for estimating the 
woody species diversity using remotely sensed data.

Arasbaran deciduous forests, located in northwestern 
Iran, have provided high biodiversity in specific climatic 
conditions with an area of about 140,000 ha. These forests 
are very important in terms of conservation of biological 
reserves, prevention of soil erosion and ecotourism servi-
ces. Around 1,334 plant species belonging to 493 genera 
and 97 families have been identified in the Arasbaran fo-
rests (Haghjou et al. 2015). To the best of our knowledge, 
no research has been conducted in Arasbaran forests so far, 
especially linking the potential of Landsat OLI imagery 
data to better understand biodiversity. To this aim, we here 
consider two working hypotheses: 1) Landsat OLI images 
can be used to estimate the woody species diversity, and 2) 
The CART method, as a non-parametric algorithm, can get 
more desirable results than those obtained by the MLR, as 
a parametric method, for estimating the woody species di-
versity in the Arasbaran forests. This study aims at relating 
NDVI (Normalized Difference Vegetation Index), NDMI 
(Normalized Difference Moisture Index), topographic 
factors (elevation, slope and aspect) and the Tasseled cap 
transformation components indices (obtained from Landsat 
8 OLI imagery) with tree species richness, evenness and 
diversity in the Arasbaran forests. Finally, we also attempt 
to evaluate the capabilities of the CART and MLR methods 
as statistical modeling approaches to realize useful and 
applicable relationships between tree species diversity and 
spectral data extracted from Landsat 8 OLI images in the 
study area.

METHODS

Study area. This study was conducted in Arasbaran pro-
tected area with a total area of 78,560 ha, which is located 
at longitude of 46° 45’ 7’’ to 46° 45’ 52’’ East, and latitude 
of 38° 55’ 43” to 38° 56’ 22’’ North (Figure. 1). The alti-
tude range varies from 1,000 to 1,850 m above sea level. 
The annual precipitation is about 500-600 mm, and soil 
types are mostly of brown and calcareous brown (Haghjou  
et al. 2015).

Field sampling. A stratified random sampling method was 
used to define the location of sampling plots. Stratification 
of sampling plots followed four main aspects (North, East, 
South and West), three slope classes (0-30, 30-60 and > 
60 %), and four elevation classes (1,000-1,250; 1,250-
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Figure 1. Location of the study area.
 Ubicación de la zona de estudio.

 

1,500; 1,500-1,750 and > 1,750 m). A total number of 130 
samples were selected based on digital maps of elevation 
(m), slope (%) and aspect (deg.) with 30-meter spatial 
resolution (UTM Zone 38N) that were provided in Arc-
GIS software for better locating plots under a proposed 
stratified sampling framework. The plots of 30 m × 30 m  
were designed ensuring that corners of each plot corres-
pond to Landsat pixels. In each sample, we recorded all 
tree species in the canopy layer and counted the number 
of individuals of each species within each sample. Thus, 
abundance for each species was considered as the num-
ber of individuals per sample. Geographical location of 
the center of each sample was obtained by GPS. Seventy 
percent of the collected data were randomly used at the 
statistical modeling stage and 30 % of the remaining data 
were used at the validation stage.

Species diversity indices. Margalef species richness index, 
Shannon evenness, Shannon diversity index and Simpson 
diversity index were calculated based on abundance of tree 
species via software PC-ORD software version 5.

Landsat 8 Satellite Image Processing. The Landsat 8 ima-
ge was used for the Arasbaran protected forests. Landsat 
8 satellite has two main sensors: the Operational Land 
Imager (OLI) and the Thermal Infrared Sensor (TIRS). 
OLI collects images using nine spectral bands in different 
wavelengths of visible, near-infrared and shortwave light 
to observe a 185 kilometer (115 mile) wide swath of the 
earth in 15-30 meter resolution providing sufficient resolu-
tion to distinguish features as urban centers, farms, forests 
and other land uses. The red (band 4) and near-infra red 

(band 5) have spatial resolution of 30 meters. Radiometric 
and atmospheric corrections were performed using ENVI 
5.3 software. The FLAASH module as a useful tool was 
applied for atmospheric correction (Beigiheidarlou et al. 
2019). False color composite of the Landsat 8 OLI image 
with RGB: 543 for a representative date of growing sea-
son and cloud-free satellite image, which was available for 
the study area and was close to the sampling period, was 
used for this study. The sampling plots used to collect the 
tree species data in the field were overlaid on each Land-
sat-8 image. Raster layers of vegetation indicators inclu-
ding NDVI (Normalized Difference Vegetation Index) and 
NDMI (Normalized Difference Moisture Index),  as com-
monly used and promising independent variables in esti-
mation of biodiversity indices, and Tasseled Cap Transfor-
mation (TCT) components were generated corresponding 
to each plot using the widely used coefficients shown in 
Table 1 (Baig et al. 2014). In fact, the TCT compresses 
and decorrelates the data into few bands (i.e. brightness, 
greenness and wetness) associated with physical scene 
characteristics of the land surface. These are the most im-
portant components mostly discussed in literature (Baig et 
al. 2014).

Regression models: MLR and CART.  The average values   
of spectral reflectance (0-1) obtained from kernel and the 
eight neighboring cells covering a specific plot, the TCT 
components, NDVI and NMDI, as well as slope, elevation 
and aspect values for each plot were extracted from the 
above-mentioned raster layers with a cell size of 30 m. The 
TCT components were brightness, greenness and wetness. 
Here, the relations between above-mentioned independent 
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Table 1. Coefficients for the Tasselled Cap Transformation (TCT) for Landsat 8 bands.
  Coeficientes de la Tranformación de la Capa de la Tapa (TCT) para las bandas del Landsat 8.

Band 7 (SWIR2)Band 6 (SWIR1)Band 5 (NIR)Band 4 (Red)Band 3 (Green)Band 2 (Blue)TCT*

0.18720.5080.55990.47330.27860.3029Brightness

-0.16080.07130.7276-0.5424-0.243-0.2941Greenness

-0.4559-0.71170.34070.32830.19730.1511Wetness

* TCTs are shown here only for the first three principal components (see)

variables and species richness, evenness and diversity in-
dices (RiEvDi: dependent variables) were studied using 
MLR and CART methods in SPSS software version 21. 
The association between brightness, greenness, wetness, 
NDVI and NDMI variables and all species diversity indi-
ces was tested by correlation (Pearson correlation coeffi-
cients).

Model efficiency criteria. Regression models were valida-
ted by root mean square error (Eq. 1), bias (Eq. 2) and bias 
percentage (Eq. 3) (Madonsela et al. 2018) as follows:

[1]

[2]

 [3]

Let, Yi is the observed value (measured value), Xi is 
the estimated value by the regression model, and n is the 

Table 2. The frequency of woody plant species in sampling plots in the Arasbarn area.
 La frecuencia de las especies de plantas leñosas en las parcelas de muestreo en la zona de Arasbarn.

Frequency (%)FamilySpeciesFrequency (%)FamilySpecies

0.009SalicaceaeSalix alba L.40.3FagaceaeQuercus petraea L.

0.009CorylaceaeCorylus avellana L.47.4CorylaceaeCarpinus betulus L.

0.027UlmaceaeUlmus glabra H.3.41AceraceaeAcer campestre L.

0.170CornaceaeCornus mas L.2.48OleaceaeFraxinus rotundifolia Mil.

0.560RhamnaceaePalliurus spina Mil.0.31RosaceaeCotoneaster integrrima M.

0.080CupressaceaeJuniperus communis L.0.53CaprifoliaceaeLonicera bractedlaris B.

1.115CorylaceaeCarpinus orientalis M.0.86CupressaceaeJuniperus oblonga M.B.

0.090RosaceaePrunus cerasif  Ehrh.0.07RhamnaceaeRhamnus cathartica L.

0.017RosaceaePyrus salicifolia  Pall.0.73FagaceaeQuercus velutina  Lam.

0.009BerberidaceaeBerberis Vulgaris L.0.09RosaceaeSorbus torminalis L.

0.090AceraceaeAcer monspessulanum L.0.215RosaceaePrunus avium L.

0.062Cornaceaecornus australis C.A.M.0.035RosaceaeMespilus germanica L.

1.080RosaceaeCrataegus orientalis Pall.0.140JuglandaceaeJuglans regia L.

number of observations (81 samples at modeling stage and 
35 samples at validation stage).

RESULTS

Woody species frequency and diversity. In all, 26 woody 
species belonging to 13 plant families were identified in 
the study area (Table 2). Quercus petreae L. and Carpinus 
betulus L. were the most frequent species. The mean and 
standard deviation of species richness, Shannon evenness, 
Shannon diversity and Simpson diversity indices were 3.3 
(±1.01), 5.8 (±0.23), 0.67 (±0.34) and 0.37 (±0.18) res-
pectively. 

Predicting models. The results of the Pearson correlation 
analyses are given in Table 3. No significant correlation 
was found between all species diversity indices and bright-
ness index, but these indices were negatively correlated 
with greenness, wetness, NDVI and NDMI variables.

The results of MLR model showed that greenness had 
a significant but lower relationship with species richness, 



BOSQUE 42(3): 383-393, 2021
Landsat satellite images for species diversity

387

evenness and Shannon and Simpson species diversity in-
dices compared to brightness, wetness, NDVI and NDMI 
(Table 4). 

Table 3. Pearson correlation coefficients between species diversity indices and independent variables.
 Coeficientes de correlación de Pearson entre los índices de diversidad de especies y las variables independientes.

WetnessBrightnessGreennessNDVINDMIVariables

-0.248-0.113-0.329-0.282*-0.265Richness

-0.3870.08-0.414-0.375-0.394Evenness

-0.449-0.074-0.489-0.461-0.462Shannon diversity

-0.430.081-0.472-0.439-0.442Simpson diversity
             

*Bold numbers indicate significant correlation coefficient at 5% level.

Table 4. The best linear regression models for estimating species diversity indices. For all MLR models, NDVI, NDMI, Brightness 
and Wetness indices were excluded from each mode by Stepwise method.
 Los mejores modelos de regresión lineal para estimar los índices de diversidad de especies. Para todos los modelos MLR, los índices NDVI, 
NDMI, Luminosidad y Humedad fueron excluidos de cada modo por el método Stepwise.

Sig.FBiasRMSEAdjunted R2R2InterceptCoefficientPredictorPredictant

0.000**14.6360.0570.930.1040.10-8.0225.171GreennessRichness

0.000**31.456-0.0200.370.2070.17-2.3401.135GreennessEvenness

0.000**40.371-0.0200.460.2520.24-3.8251.574GreennessShannon diversity

0.000**40.330-0.0070.500.2520.22-2.1310.882GreennessSimpson diversity

Table 5. Descriptive statistics of independent variables at CART modeling step.
 Estadísticas descriptivas de las variables independientes en el paso de modelización CART.

BrightnessGreennessWetnessNDVINDMISlope (%)Aspect (deg.)Elevation (m)Parameters

0.2700.10-0.100.520.102.121.801,140Minimum

0.4600.320.020.890.4556.74359.582,155Maximum

0.3700.23-0.010.800.3243.47184.651,505.2Mean

0.0360.0490.0270.090.0819.68117.4980.266Std. Dev.

8181818181818181Sample size

The descriptive statistical parameters of independent 
variables of CART model are presented in Tables 5 and 6 
at modeling and validation stages, respectively.

Table 6. Descriptive statistics of independent variables at CART validation step.
 Estadísticas descriptivas de las variables independientes en la etapa de validación de CART.

BrightnessGreennessWetnessNDVINDMISlop (%)Aspect (deg.)Elevation (m)Parameters

0.2800.130-0.0800.6300.1515.9206.00901,319Minimum

0.4600.2900.0200.9000.44100.14356.981,829Maximum

0.3700.230-0.0200.8000.31847.41190.931,526.89Mean

0.0380.0440.0260.0750.08017.540114.67166.76Std. Dev.

3535353535353535Sample size
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As shown in Figure 2, the most suitable CART model 
to estimate species richness had 6 nodes. Greenness and 
brightness variables were considered as the most impor-
tant estimator to form decision tree branches.

CART model had 20 nodes to estimate species even-
ness. Wetness and greenness variables were selected as 
effective variables in creating the branches (Figure 3). In 
general, using the last nodes approach, separator variables 
(decision) are less important than variables of the first 
node (higher levels of the decision tree).

CART model had 34 nodes for estimating Shannon spe-
cies diversity, in which two vegetation indices (greenness 
and NDVI) were defined as the most important decision 
variable for creating the first and second nodes (Figure 4).

In the first and second nodes of the CART model used 
to estimate Simpson species diversity, vegetation was an 
effective variable on estimation of Simpson’s diversity in-
dex of woody species (Figure 5).

The values   of RMSE, RMSEr, Bias and Bias % for mo-
deling stage are given in Table 7 and those for validation 
stage are presented in Table 8. 

The results of CART model showed that greenness and 
wetness were respectively selected for estimating species 

Figure 2. CART decision tree to estimate species richness.
 Árbol de decisión CART para estimar la riqueza de especies.

 

Figure 3. CART decision tree to estimate species evenness.
 Árbol de decisión CART para estimar la uniformidad de las especies.
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Figure 4. CART decision tree to estimate Shannon species diversity.
 Árbol de decisión CART para estimar la diversidad de especies - índice de Shannon.

 

Table 7. CART performance criteria at modeling step.
 Criterios de rendimiento de CART en la etapa de modelización.

R2RMSEBiasBias%Species Indices

0.211.850.080.03Richness

0.420.170.010.04Evenness

0.410.270.0070.01Shannon diversity

0.420.150.030.09Simpson diversity

Table 8. CART performance criteria at validation step.
 Criterios de rendimiento de CART en la etapa de validación.

R2RMSEBiasBias%Species Indices

0.041.330.103.2Richness

0.150.240.024.3Evenness

0.220.370.058.1Shannon diversity

0.040.180.037.9Simpson diversity
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Figure 5. CART decision tree to estimate Simpson species diversity.
 Árbol de decisión CART para estimar la diversidad de especies - índice de Shannon.

 

richness, Shannon and Simpson diversity indices and wet-
ness for evenness index, which were the best predictors 
compared to other variables in the modeling step (Table 7).  
Although regarding the results of CART models error cri-
terion at validation stage, this model was more effective in 
estimating the species evenness, Shannon diversity indices 
compared to other indices (Table 8). Figures 6 - 9 show 
distribution plot diagrams using graphical comparison of 
the results of CART model with the measured values of 
plant diversity indicators (center of samples) at validation 
stage. The closer to distribution points to the ideal fit line 
1: 1, the more accurate they will represent modeling. The 
point below the line means underestimation and the point 
over the line means overestimation

DISCUSSION

This study was conducted to investigate the relations-
hip between the field-based estimations of woody species 
richness and diversity indices and spectral data extracted 

from satellite images. All species diversity indices were 
negatively correlated with greenness, wetness, NDVI and 
NDMI variables in the Arasbaran forests (Table 2). This 
seems to be mainly due to the fact that many plots were 
dominated by oak (Quercus petraea) and hornbeam (Car-
pinus betulus) in the study area. The stands where the 
number of tree species was low and stem density was high 
in the region had lower diversity, although produced hig-
her spectral values (Ozdemir and Karnieli 2011). In this 
regard, similar result were reported by Madonsela et al. 
(2018) who stated that Shannon diversity index was ne-
gatively correlated with NDVI when influenced by mono-
species canopy cover. Similarly, NDVI had the lowest co-
rrelation with species richness in dry forests in Brazil (Me-
deiros et al. 2019), wetlands in Italy (Rocchini et al. 2016) 
and in dry tropical forests in India (Nagendra et al. 2010). 
These results might be statistically significant because 
vegetation indices such as the NDVI decrease amplitude 
of values by rescaling the original data influencing pixel 
value dispersion (Rocchini et al. 2016). In addition, Peng 
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Figure 9. Scatter plot of Simpson diversity of Arasbaran protec-
ted area.
 Gráfico de dispersión de la diversidad de Simpson en el área 
protegida de Arasbaran.

Figure 6. Scatter plot species richness of Arasbaran protected area.
 Gráfico de dispersión de riqueza de especies del área protegida 
de Arasbaran.

Figure 7. Scatter plot of species evenness of Arasbaran protected 
area.
 Gráfico de dispersión de uniformidad de especies del área pro-
tegida de Arasbaran.

Figure 8. Scatter plot of Shanon diversity of Arasbaran protected 
area.
 Gráfico de dispersión de diversidad - índice de Shanon - en el 
área protegida de Arasbaran.

 

 

 

 

et al. (2018) found that plant diversity indices were  not 
significantly related to reflectance and  Meng et al. (2016) 
obtained very low and non-statistically significant corre-
lations when the stand was dominated by the coniferous 
tree species, such as Cunninghamia lanceolata and Pinus 
massoniana. Although these correlations were reported to 
be significantly positive in temperate forests in Iran (Mo-
hammadi  and  Shataee 2010). In contrast, Chitale et al. 
(2019)  observed very high correlation between remote 
sensing-based vegetation indices and plant richness in dry 
deciduous forests. The acquired mixed reflectance of va-
rious plant species is effected by water content, leaf thic-
kness, mesophyll structure and canopy structure (Sytar et 
al. 2017). Overall, the type of forest and complexity of 
forest stands in points of multi-layers and species com-
position can affect on the output of estimations. Also, low 
spatial resolution imagery or large pixel size of Landsat 8 
OLI may lead to estimate low-precision results, especially 
for the extraction of tree diversity indices, due to its finer 
detection weakness of spectral reflections of forest canopy.

The results of MLR model showed that greenness 
had a significant relationship with all diversity indices. 
However, brightness, wetness, NDVI and NDMI had no 
significant explanatory power for estimating tree species 
diversity via MLR models (Table 4). Consistent with this 
assertion, Madonsela et al. (2018) indicated that interac-
tion between NDVI and woody canopy cover was not 
significant in explaining tree species diversity. Moreover, 
Mohammadi and Shataee (2010) revealed that NDVI, 
brightness and greenness were the most important variable 
determining species richness and Simpson index variabili-
ty in the temperate forests of Iran. Although, our obtained 
R2 values of MLR were lower than those of other studies 
for estimation of different plant diversity indices. Moham-
madi and Shataee (2010) reported a value of R² = 0.59 for 
species richness and R² = 0.45 for Simpson diversity using 
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Landsat ETM+ in Hyrcanian forests of Iran. In addition,  
Medeiros et al. (2019) illustrated a significant positive co-
rrelation between the near-infrared spectral band (Land-
sat 8 OLI) and the woody species richness (R2 =0.74, P < 
0.001) in the largest dry forests in South America and this 
band could be used for estimation of the species richness 
using power and quadratic regression models.

Based on CART models, greenness and wetness were 
defined as model predictors to estimate species richness 
and diversity indices in the Arasbaran forests. Generally, 
this model was more effective in estimating woody spe-
cies evenness and Shannon diversity indices according to 
low values of RMSE and Bias values (see all scatter plots). 
This is mainly because species richness is more influenced 
than Shannon diversity index by the presence of rare spe-
cies (Ricotta et al. 2008). Implementation of CART model 
showed more explanatory power for estimation of plant di-
versity using Landsat ETM+ data in the Hyrcanian forests, 
northern of Iran (Mohammadi and Shataee 2010) and in 
tropical forests (Gillespie et al. 2009). Comparison of the 
results of MLR and decision tree in CART models showed 
that the efficiency of CART model was significantly better 
for estimating species diversity indices than that of MLR 
model, which is consistent with a previous work (Moham-
madi and  Shataee 2010). In addition, It was stated that 
CART, which did not need to make any assumptions about 
the data, was a more robust statistical method to investi-
gate complex relationship between diversity variables and 
remotely sensed data (Meng et al. 2016).

CONCLUSIONS

Overall, in this study, we evaluated the capability of 
Landsat 8 OLI Satellite image for the modeling and esti-
mation of various diversity indices, such as species rich-
ness and diversity in the Arasbaran forests in Iran by two 
methods: MLR and CART. The results of this study showed 
that the efficiency of CART model was considerably higher 
than that of MLR for estimating woody species evenness 
and Shannon diversity indices. Although CART could not 
estimate species richness and diversity very precisely based 
on Landsat 8 OLI Satellite data in the region, suggesting 
the necessity to use high-resolution satellite data for the best 
evaluation of forest species richness in mountainous forests.
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