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Spatial modeling of forest fires in Mexico: an integration of two data sources
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SUMMARY

Forest fires are a cause of global concern, which requires generating knowledge on their spatial behavior. By hypothesizing that the 
spatial pattern of forest fires across Mexico is randomly distributed, this study aimed at making an analysis of the distribution of forest 
fires (2005-2015) using remote sensing information and field data collected by CONAFOR (National Forest Commission) and MODIS 
(Moderate-Resolution Imaging Spectroradiometer). The study compared both sources of information through the G-statistic test that 
identified clustering patterns. The “hot spots” analysis identified clustered areas with significant values in both data sources. These 
zones were extended through Sierra Madre Occidental, Península de Yucatán, northern Sierra Madre Oriental and Península de Baja 
California. The highly coincidental clusters were found in the central-western region along the Eje Neovolcánico, as well as in a small 
part of Sierra Madre del Sur. The analysis of spatial correlation determined that both sources of information complement each other, 
enhancing their scope. It is concluded that forest fires in Mexico follow a spatial clustering trend.

Key words: hotspots, cluster-patterns, spatial-correlations, G statistics.

RESUMEN

Los incendios forestales son una causa de preocupación mundial, lo que requiere generar conocimiento sobre su comportamiento 
espacial. Hipotetizando que el patrón espacial de los incendios forestales en México se distribuye de manera aleatoria, este estudio tuvo 
como objetivo analizar la distribución de los incendios forestales (2005-2015), utilizando información de sensores remotos y datos 
de campo recopilados por CONAFOR (Comisión Nacional Forestal) y MODIS (Espectrorradiómetro de Imágenes de Resolución 
Moderada). El estudio comparó ambas fuentes de información a través de la prueba del estadístico G que identificó patrones de 
agrupamiento. El análisis de “puntos calientes” identificó áreas de agrupación con valores significativos en ambas fuentes de datos. 
Estas zonas se extendieron a través de la Sierra Madre Occidental, la Península de Yucatán, el norte de la Sierra Madre Oriental y 
la Península de Baja California. Las agrupaciones altamente coincidentes se encontraron en la región centro-oeste a lo largo del Eje 
Neovolcánico, así como en una pequeña parte de la Sierra Madre del Sur. El análisis de correlación espacial determinó que ambas 
fuentes de información se complementaron entre sí, mejorando su alcance. Se concluyó que los incendios forestales en México siguen 
una tendencia espacial de agrupamiento.

Palabras clave: puntos calientes, patrones de agrupamiento, correlación espacial, estadístico G.

INTRODUCTION

Thousands of hectares of forests, savannas, grasslands, 
scrublands, tundra, deserts, wetlands and agricultural 
fields are affected by fires worldwide. Forest fires cause 
economic and ecological losses, specifically in Mexico 
(Ávila-Flores et al. 2010a). This has led to consider forest 
fires as a growing concern that requires knowledge of their 
behavior, spatial distribution and impact in order to make 
appropriate management decisions.

The spatial analysis is a technique that provides useful 
tools to assess forest fires, their causes and consequently 
the trends of these incidents (Díaz-Hormazábal and Gon-
zález 2016, Simental and Pompa 2016). Particularly, 
it is possible to analyze patterns of spatial distribution, 
allowing researchers to evaluate hypotheses on whether 
a phenomenon observed follows a random or correlated 
territorial distribution (Ávila-Flores et al. 2010a). Within 
the tools of the spatial analysis, the “hot spots” analysis 
is highlighted through the Getis-Ord G-statistic (Ord and 
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Getis 1992), designed to establish and identify clustering 
patterns (Pompa and Hernández 2012).

In Mexico, prevention and control of forest fires are 
carried out by the National Forest Fire Protection Program 
(CONAFOR, by its Spanish acronym). Based on current 
regulations, CONAFOR is responsible for its instrumen-
tation and coordination; however, data access and collec-
tion (especially on field) is sometimes complicated due to 
logistical and operational factors that restrict the quantity 
and quality of the data.

Fire prevention and suppression require solid, reliable 
and updated spatial tools. Worldwide, NASA -- through 
the Land Atmosphere Near Real-Time Capability for EOS 
(LANCE) -- uses Moderate Resolution Imaging Spectrora-
diometer (MODIS) data that provide real-time and histori-
cal data of the location of hot spots using infrared radiation. 
It also facilitates the capture and collection of hot spots by 
means of two satellites (NASA 2016). MODIS information 
can be easily transformed into “active fire maps”; this sen-
sor has been used to create a global fire information mana-
gement system. Since 1999, the National Commission for 
Knowledge and Use of Biodiversity (CONABIO) in Mexico 
has implemented a system for the detection of hot spots (as 
an indicator of possible forest fires) using daytime and night 
time images from an AVHRR (Advanced Very High Reso-
lution Radiometer) sensor on board satellites of the NOAA 
(National Oceanic and Atmospheric Administration) sensor.

In spite of these efforts, the use of satellite tools and 
field data is still limited in Mexico. The use of techniques 
based on spatial statistics that allow improving the analysis 
on satellite data is little known. For instance, historical clus-
tering trends may be helpful in defining a spatial-temporal 
distribution of fires on a national scale, given the biodiver-
sity richness and biomass contributions of Mexican ecosys-
tems (CONABIO 2016). Such ecosystems are also a source 
of subsistence for the population (CONAFOR 2016). The 
greatest challenge to establish fire regimes in Mexico might 
be the lack of a comprehensive and consistent national fire 
distribution perspective. This lack of systematized records 
can be complemented by spatial and temporal satellite ima-
gery records (NASA 2016) and field data.

The objective of this study is to identify clustering trends 
using two data sources that combine remote sensing and 
field data information as an indicator of fire activity. The hy-
pothesis is that forest fires across Mexico are randomly dis-
tributed and follow the same pattern throughout the territory.

METHODS

Study area. Mexico is located in the Northern hemisphere. 
To the north, it borders with the United States of Ameri-
ca, and Guatemala and Belize to the south. The Atlantic 
Ocean is found on the east while the Pacific Ocean su-
rrounds the west. The total area of the country is almost 
200 million hectares and it is full of very diverse and com-
plex ecosystems, ranging in form, location, topography 

and biological diversity. The territory is evenly distribu-
ted on both sides of the Tropic of Cancer, which generates 
completely different ecological conditions in both regions 
of the country for environmental and biological diversifi-
cation (CONABIO 2016).

Mexico has a forest area of approximately 138 million 
hectares, which represents 70.4 % of the territory. From 
1998 to 2015, an annual average of 8,126 forest fires oc-
curred, with an annual affected area of 238,892 ha. Appro-
ximately 93 % of this area corresponds to grassland and 
scrubland and 7 % to adult trees (CONAFOR 2016).

Data. To analyze hot spots of forest fires in Mexico from 
2005-2015, two databases were used: a) A monthly fire 
report provided by the National Forestry Commission 
of Mexico (CONAFOR) (figure 1) and b) data obtained 
using a Moderate Resolution Imaging Spectroradiometer 
(MODIS) (figure 2). The latter identifies the infrared radia-
tion emitted by fires and their location using two satellites 
(Aqua and Terra).

The CONAFOR database was obtained from the Fire 
Management Agency (CONAFOR 2016). The information 
consists of the geographical location of fire points (coordina-
tes, property, municipality, state), causes of fire, type of fire, 
type of ecosystem affected, area affected (ha) and duration 
(start and end date of the fire). Subsequently, this database 
was submitted to a verification and cleaning process due to 
possible inconsistencies. Afterwards, a shapefile of hot spots 
was created, which contains the previously described data.

The MODIS spectroradiometer database was obtained 
from the LANCE system (NASA 2016). These statistics 
were downloaded into a shapefile format (Esri vector data 
storage format) with a total of 702,991 hot spots recorded 
by the sensor. The data were afterward cleaned and organi-
zed for later analyses. In addition, geoprocessing was per-
formed to segregate those spots that did not correspond to 
forest fires, using land cover data in Mexico (CONABIO 
2016), using ArcGIS 10.0 (ESRI 2010).

Spatial analyses. The spatial analysis for the two fire da-
tabases consisted of a “hot spots analysis” based on the 
Getis-Ord G-statistic test (Ord and Getis 1992). This sta-
tistical tool helps identify the different clustering trends 
of spot densities and thus is able to verify if these fires are 
clustered into units with high or low values. The spatial 
distribution may be random, uniform or aggregate. The 
Getis-Ord G-statistic is used to detect the type of spatial 
distribution a phenomenon shows and is especially useful 
in cases where global traditional statistics, such as kernel 
estimation, k-function analysis, Moran’s I index and the 
semi-variogram, did not display any global spatial pattern.

This analysis was performed using ArcGIS, for which 
it was necessary to subdivide the Mexican Republic into 
852 grids using the CRU grid (0.5° x 0.5°) (UEA 2016). 
This is assuming that the presence of forest fires is con-
sistent with environmental phenomena (Yang et al. 2007).  
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Figure 1. A) Forest fires in Mexico from 2005 to 2015, according to CONAFOR (2016). B) Hot spot in Mexico from 2005 to 2015, 
according to NASA (2016).
 A) Incendios forestales en México de 2005 a 2015, de acuerdo con CONAFOR (2016). B) puntos de calor en México de 2005 a 2015, de 
acuerdo con NASA (2016).

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A) Forest fires in Mexico from 2005 to 2015, according to CONAFOR (2016). B) hot spots in 
Mexico from years 2005 to 2015, according to NASA (2016). 
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A spatial union was made with these grids to count the 
number of fires (events) in each polygon, therefore the re-
sult of this union was the analysis variable for this study.

The null hypothesis for the “Hot spot analysis” tool as-
sumes complete spatial randomness. This analysis offers 
various parameters to draw conclusions (Gi Bin, P value 
and Z score value). The Z score values and P values indica-
te whether or not the null hypothesis can be rejected. Based 
on the above, the Gi Bin field acquires a value or a category 
where numbers higher than zero correspond to hot spots 
(aggregated distribution) and numbers lower than zero co-
rrespond to cold spots. Having small P values and a very 
high or a very low Z score value indicates that it is unlikely 
that the observed spatial pattern reflects the theoretical ran-
dom pattern represented by its null hypothesis. Therefore, 
the Gi Bin field acquires a value of 0 (ESRI 2010).

In addition to that, a spatial correlation analysis (ESRI 
2010) was carried out in order to generate a map of gradients 
on fire spatial correspondences/discrepancies in Mexico.

A spatiotemporal analysis of annual series for the two 
databases was carried out, to test the temporal and spatial 
autocorrelation in stochastic phenomena (Pérez-Verdín et 
al. 2013). Whether fire occurrence in a particular year was 
statistically related to that of the previous year was evalua-
ted through autoregressive models (up to four lags).

Although the casual analysis of the frequency of fires 
is beyond the objectives of this work, an exploration of 
some explanatory variables is presented using Geographic 
Weighted Regression (Brunsdon et al. 1996, ArcGIS 10). 
We tested those variables used in similar studies (Ávila-Flo-
res et al. 2010b): population density and road density from 
CONABIO (2016) and aerial biomass (Cartus et al. 2014).

RESULTS

In the cleaned MODIS data base, a total of 393,980 fire 
points were recorded. By contrast, 47,975 were reported 
by the National Forestry Commission of Mexico, which 
represent 12.17% of the former (figure 1). 

As for clustering levels, hot spots, or areas with high 
clustering value, were found in the two databases analyzed 
(figures 2 and 3). The figure 2A shows the clustering va-
lues or hot spots found for the CONAFOR database, which 
correspond to the categories: 1 (orange color with a relia-
bility level of 90 %), 2 (light red color with a reliability 
level of 95 %) and 3 (dark red color with a reliability of 99 
%, this one represents the category with higher fire clus-
tering.) These categories are related to P values between 
0 and 0.2781 (figure 2B) and Z score values from 1.4907 
to 15.2887 (figure 2C). In the analyses of the data of this 
source, there were no cold spots or low clustering spots.

The hot spot distribution described above (figure 2A) 
identifies the largest clustering of forest fires. These cate-
gories of clusters are distributed from east to west within 
the central-western region of the country, covering the area 
of the Eje Neovolcánico and part of Sierra Madre del Sur, 
which mainly have coniferous and broadleaf forest cover, 
as well as tropical deciduous forest (CONABIO 2016).

As for the northwestern part of the country, high clustering 
values were found in Sierra Madre Occidental, which has a ve-
getation cover of mostly coniferous and broadleaf forest. High 
clustering values were also found in the upper area of Penin-
sula of Baja California with a mediterranean shrubland cover.

On the other hand, the data of the MODIS sensor showed 
high clustering values or hot spots in categories 1, 2 and 3  
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Figure 2. Forest fires according to CONAFOR 2005-2015. A) Category Gi Bin (hot spots) (estimated 
spatial intensity). B) P values (expected level). 
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Figure 2. Forest fires according to CONAFOR 2005-2015. A) Ca-
tegory Gi Bin (hot spots) (estimated spatial intensity). B) P values 
(expected level). C) Z score values  (standard deviation).
 Incendios forestales de acuerdo a CONAFOR 2005-2015. A) 
categoria Gi Bin (puntos calientes) (intensidad espacial estimada). B) 
valores de P (nivel de significancia). C) valores de puntuación Z (desvia-
ción estándar).

Figure 3. Forest fires according to MODIS 2005-2015. A) Cate-
gory Gi Bin (hot spots) (estimated spatial intensity). B) P values 
(expected level). C) Z score values  (standard deviation).
 Incendios forestales de acuerdo a MODIS 2005-2015. A) ca-
tegoria Gi Bin (puntos calientes) (intensidad espacial estimada). B) valo-
res de P (nivel de significancia). C) valores de puntuación Z (desviación 
estándar).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Forest fires according to MODIS 2005-2015. A) Category Gi Bin (Hot Spots) (estimated 
spatial intensity). B) P values (expected level). C) Z score values  (standard deviation). 
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(figure 3A). Category 1 (orange), with a reliability level 
of 90 % (figure 3A) shows P values between 0.3123 and 
0.4975 (figure 3B), which are related to Z score values 
from 0.3257 to 1.8541 (figure 3C). Category 2 (light red) 
has high clustering however a reliability level of 95 % (fi-
gure 3A), which corresponds to P values between 0.1225 
and 0.3123 (figure 3B). It is related to Z scores ranging 
from 1.8541 to 3.8159 (figure 3C). While category 3 (dark 
red) has a reliability level of 99 % (figure 3A) with P va-
lues between 0.000 and 0.1225 (figure 3B) and Z values 
from 3.8159 to 7.9157 (figure 3C).

The clustering categories, or hot spots as described abo-
ve (figure 3A), are distributed within the northwest region 
along the Sierra Madre Occidental. The region, according 
to CONABIO (2016) has coniferous and broad-leaved fo-
rest vegetation and, to a lesser extent, tropical deciduous 
forests. This clustering of hot spots extends to the central-
western region of the country, including the western end 
of the Eje Neovolcánico and part of Sierra Madre del Sur, 
where the same type of vegetation mentioned above is 
found. High concentrations of hot spots are also located in 
the southeast region, specifically in Península de Yucatán, 
which has mainly tropical deciduous forest, sub-deciduous 
forest and perennial forest vegetation.

Likewise, high concentrations of hot spots were also 
found in the northeast region, however in a smaller area. 
It specifically belongs to Sierra Madre Oriental, which is 
mostly covered by xerophilous scrubland.

Figure 4. Results for the hot spots correlation (MODIS/CONAFOR).
 Resultados de la correlación de puntos calientes (MODIS / CONAFOR).

 

 

 

Figure 4. Results for the hot spots correlation (MODIS/CONAFOR). 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results obtained from the spatial correlation of hot 
spots of forest fires between the two analyzed data bases 
showed similarity/discrepancy gradients (figure 4). The di-
sagreements of hot spots of both bases are seen in orange, 
while the spatial similarities between the two databases are 
shown in red. The lack of association in the presence of 
casualties is seen in white.

The temporal autocorrelation analysis found that the 
degree of dependence of the number of fires at a time t, 
with the same number of fires at a time t + k, was not sig-
nificant (P > 0.05) for the two databases (CONAFOR: t1 
= 0.055, t2 = -0.473, t3 = 0.144 and t4 = -0.394; MODIS: 
t1 = -0.142, t2 = 0.072, t3 = -0.393 and t4 = -0.290). In 
spatial terms, the CONAFOR database (figure 5A) shows 
that the groups of fires follow a similar pattern year by 
year, generally extending through the Eje Neovolcánico, 
and to a lesser extent north of Sierra Madre Occidental and 
the upper end of Península de Baja California. Moreover, 
the analysis of the MODIS database (figure 5B) showed 
annual variability in the groups of fires, since they are dis-
tributed mainly along Sierra Madre Occidental and Penín-
sula de Yucatán. This trend can be attributed to the ability 
of the MODIS sensor to record heat emissions, in a clear 
comparative advantage over CONAFOR data.

The exploratory analysis of the possible variables that 
influence the frequency of fires showed that the population 
density is significantly explanatory (R2 ≈ 0.22, figure 6).
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Figure 5. Annual spatial trend of forest fires in the two data sources A) CONAFOR, B) MODIS. 

                          

Figure 5. Annual spatial trend of forest fires in the two data sources A) CONAFOR, B) MODIS.
 Tendencia espacial anual de incendios forestales en las dos bases de datos A) CONAFOR, B) MODIS.
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Figure 6. Local R2 of GWR between fire frequency and population density.
 R2 de la regresión geográficamente ponderada entre frecuencia de incendios y densidad de población.

DISCUSSION

Spatial trend. Many studies of forest fires have been con-
ducted in Mexico over the past few years, but efforts to 
spatially characterize fire distribution in terms of spatial 
aggregation have been relatively scarce and limited to 
regional analyses (e.g., Ávila-Flores et al. 2010a, Perez-
Verdín et al. 2013).  To date, no effort had been made to 
quantitatively compare the spatial characteristics of cluste-
ring at the national scale.

The study demonstrated that forest fires in Mexico 
showed a spatial clustering trend. To our knowledge, it is 
the first report that provides a complete quantitative spatial 
perspective of its occurrence using two data sources. This 
agrees with Yang et al. (2007), Ávila-Flores et al. (2010a), 
and Simental and Pompa (2016), who report forest fires as 
non-random events.

The G statistic test proved to be very helpful in the spa-
tial analysis of forest fires. This quantitative tool is simple 
and statistically supported to determine the degree of clus-
tering or hot spots (Pompa and Hernández 2012).

Areas with different rates of forest fire clustering were 
found in Mexico thanks to the G statistic. Special empha-
sis is given to areas with high clustering rates or hot spots 
(categories 1, 2 and 3, with reliability percentages of 90, 
95 and 99 %, respectively), since in those areas the occu-
rrence of fires is very high. Therefore, their identification 
becomes a strategic factor for making timely decisions.

Thus, Ávila-Flores et al. (2010a) suggest the need to 
statistically explain this phenomenon through some spe-

 

 

 
Figure 6. Local R2 of the geographically weighted regression between fire frequency and population density 

 

 

 

 

cific regression method, which allows finding explanatory 
variables of fire clustering. Also, Pompa and Hernández 
(2012) mention that further studies on forest fire risk 
should be complemented by additional information, such 
as fuel mapping, or even socio-economic information to 
determine a comprehensive risk index.

The first prerequisite is to find out the areas that con-
tinuously have these events. The hot spots generated here 
fulfill this need. The next step is to support the develo-
pment of fire management programs from these geogra-
phic areas and to associate them with their explanatory 
variables: from biophysics (climate, fuels, topography, 
etc.) (Ávila-Flores et al. 2010b) to socioeconomic proces-
ses (land tenure, education, working conditions, etc.). The 
geographical representation of forest fires is the first step 
that enhances the study of this phenomenon. For example, 
in Chile, most of them were strongly associated with the 
road network and anthropogenic data (Díaz-Hormazábal 
and González 2016). This may be consistent with our re-
sults (figure 5). Particularly, focus should go to the area 
at the western end of the Eje Neovolcánico that shows a 
larger clustering value, compared to the area in Sierra Ma-
dre del Sur, Península de Yucatán, and Sierra Madre Occi-
dental. This knowledge allows its use as a support tool to 
outline strategic policies in terms of priority.

We focused our study on spatial distribution of forest 
fires; however, there are many drivers of fire ignitions 
(e.g., type of vegetation burnt, fire regime, anthropogenic 
influences, type of land use activities, among others) that 
are beyond the scope of this work. Fire ignitions have been 
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reported to have specific spatial occurrence patterns (e.g., 
Prestemon and Butry 2005, McRae and Sharples 2015), 
which result from different environmental or socioecono-
mic factors (Yang et al. 2007, Pérez-Verdín et al. 2013, 
Salvati et al. 2014). Some studies have shown that spa-
tial patterns of fire hotspots are related to their causes. For 
example, studies by Prestemon and Butry (2005) and Gen-
ton et al. (2006) found that fires caused by arsonists were 
more spatially clustered than those caused by other types 
of ignitions. For Salvati et al. (2014), in a study conducted 
in the Mediterranean, the spatial distribution of fire occurs 
according to socio-economic variables. Here, our explo-
ratory analysis showed the fires frequency is associated 
mainly with anthropogenic causes (figure 6).

Since analysis of fire regimes are not easy to establish, 
it is necessary to develop more detailed spatial models that 
provide information on the social and biophysical interac-
tions that affect the occurrence of fires. It is important to 
note that the spatial scale aspect plays an important role 
(Parisien et al. 2006). In the same way, our results show 
the existence of different spatial patterns as a function of 
local factors.

Integration of CONAFOR-MODIS data sources. With 
the spatial correlation of both coverages, it was possible 
to determine the similarities and inconclusive discrepan-
cies between the databases (figure 5). It is peculiar, for 
example, that the main fire area of the country (Eje Neo-
volcánico) (Rodríguez 2001) was only relevant for the 
CONAFOR database. This could mean inefficiencies in 
fire-fighting on both bases. A more frequent comparison 
of both datasets (NASA-CONAFOR) is recommended so 
that they are standardized. In theory, if both were efficient 
by themselves, they would have to be similar. In this way, 
both sources of information complement each other. Their 
union is strengthened in their scopes since according to 
NASA (2016), a comprehensive forest fire management 
system requires sufficiently precise and updated databases.

Current research on forest fires is focusing worldwi-
de on remote sensing (Boschetti et al. 2015, Tarimo et al. 
2015). The advantage of monitoring updated and easily ac-
cessible data is an advantage. However, there must be cau-
tion with the data source, as this can lead to over detection 
of fires since observations can be made several times in a 
day (Parajuli et al. 2015). In a study by Jin et al. (2003), 
many fires were recorded twice. MODIS has the advanta-
ge of detecting fires at more precise times (Reeves et al. 
2006), as well as making considerable improvements in 
spatial resolution (Stocks et al. 2001). However, Schroeder 
et al. (2010) validated fires, finding a high omission error. 
This has been reported in other studies (Roy and Boschetti 
2009, Boschetti et al. 2015), which limit the effectiveness 
of these products to larger scales when finer information 
and resolution -than the one available in the public do-
main- is required. The MODIS sensor recognizes more hot 
spots and usually overestimates the actual fire data, since 

this system recognizes any infrared radiation emitted by 
the fire regardless of where it is located, like for example, 
recording fires in non-forest areas (brick kilns, sawdust 
burners, agricultural fires near forest areas, etc.). Due to 
this, special emphasis is placed on the importance of the 
geoprocessing analysis with the land use coverage conduc-
ted by the CONABIO (2016). This allowed non-vegetated 
surface fires (on bare soil cover, urban areas, agricultural 
areas, water bodies, etc.) to be discarded. This reduced the 
number of fires by 44 % compared to the initial analysis.

The main errors of the data collected on field are related 
to omissions of location and characteristics, provision of 
resources for detection, access difficulties, costs and time. 
CONAFOR records are exceeded by 87.83 % by the MO-
DIS sensor. However, these records foster a starting point 
generated by local knowledge. Since satellite detection is 
limited to bare soil emitting heat, shadows and cloudiness 
(Tarimo et al. 2015), it can lead to confusions. For this re-
ason, the combination of both techniques strengthens their 
weaknesses and complements their advantages.

Proper fire management requires knowledge on fire na-
ture and dynamics (Antunes et al. 2014). Therefore, the 
assessment of forest fires through hot spots is of particular 
importance in describing regional trends and developing 
mitigation strategies. Results show that 21 % of the fo-
rest area is being affected by fires. Some areas have higher 
intensities than others, which can be related to their cove-
rage, fuels and climate conditions at the time of the fire, 
month in which the fire occurred, topographic complex or 
socio-economic data.

The number of annual fires manifests randomly, noting 
that the different conditions that affect the number of fi-
res in a particular year do not affect the number of fires 
in the following year. This phenomenon is similar to pre-
cipitations. One year may be humid and the next one dry 
(Perez-Verdín et al. 2013). In general terms, both databa-
ses annually showed the same spatial behavior along the 
Mexican territory. This agrees with Velasco (2016) in the 
study on decadal variations of forest fires in Mexico, which 
shows a high incidence in Sierra Madre Occidental, Sierra 
Madre Oriental, and the Neovolcanic Axis. However, in a 
comparative way, these two data sources show spatial dis-
similarities whose causes may motivate further research.

CONCLUSIONS

This study used two databases to evaluate the spatial 
distribution of forest fires in Mexico. One used an on-field 
information (CONAFOR) and the other was based on re-
mote sensing (MODIS). The spatial analysis for the two 
fire databases was done through the Getis-Ord G-statistic 
test. This statistical tool identified the different clustering 
trends of spot densities and thus was able to verify if fires 
were clustered into units with high or low values. Results 
indicate that the hypothesis of complete spatial random-
ness in both sources of information is rejected. Forest 
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fires follow a high clustering pattern, which rejects our 
hypothesis that fires occur by chance. The two analyzed 
sources showed high clustering values in different areas.  

The use of remote sensing (e.g. MODIS) and field data 
are suitable tools for studying phenomena such as the spa-
tial distribution of forest fires. While they rely on different 
methodologies, they can be used as supplementary sour-
ces to study fire occurrence. With the spatial correlation in 
both sources, it was possible to determine their similarities 
and inconclusive discrepancies. The results of this study 
can help to better design a risk index and strategic policies. 
Though the frequency seems to be associated with climatic 
and anthropogenic causes, it is necessary to use more de-
tailed and almost real-time spatial information.
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