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Abstract - The paper presents a formulation of a general 
optimal control problem together with the main tool for 
finding its solutions - the Pontryagin’s maximum principle. 
Zermello’s problem of optimal ship routing in an area of 
drift currents is also outlined as an exemplary task of this 
class. A numerical solution for the case of vortex-type 
current field is presented and explained, and a short 
discussion of obtained results is given. 

 
Keywords - Dynamic optimisation, optimal weather routing, 
Zermello’s navigational problem, Pontryagin’s maximum 
principle. 

1.  INTRODUCTION 
The underlying paper presents a formulation of 

optimal control problem, Bryson and Ho(1969), 
Leitman(1966), together with the main tool for finding 
(deriving) its optimal solution, which is the 
Pontryagin’s maximum principle. Due to general 
formulation of the problem, as well as non-standard 
form of presented transversality conditions, 
Zwierzewicz (1993), to be satisfied by co-state vector 
on the boundary of target set, the two-point boundary 
value task ensuing here could be reduced to the 
standard, parametrised Cauchy’s initial value problem. 
This problem, in turn, is intuitively simple and  easy to 
solve using a computer, thereby a simple shooting 
method, can be applied for its numerical solution. In 
other words, we can generate a family of optimal 
trajectories backward in time, starting from the 
boundary of the target set. The associated problem of 
selecting the trajectory which connects with a given 
initial condition is now a relatively easy task. With the 
help of computer, and especially for low dimensional 
problems, such a trajectory can be located at once. For 
more complicated tasks, however, one can apply some 
of the well-known finite dimensional optimisation 
procedures. 

The subsequent part discusses the effectiveness of so 
developed theory through solving of a specific optimal 
navigation problem, which is the Zermello’s 
navigational problem, Poppe (1984), Zwierzewicz 

(1993), as known in the calculus of variations. The 
task is to find an optimal ship route in a region 
influenced by environmental (external) factors 
affecting the ship motion (wind, waves, currents etc.). 
Such a problem is also referred to in the literature as 
an optimal routing problem, or ship weather routing. 
The sea conditions data (influence factors) that could 
be obtained from various weather data sources are 
aggregated here in the given velocity vector field 
assumed as a known.  

A case of velocity field in form of a symmetrical 
vortex obtained by a full rotation of radius function is 
considered and solved further on, with the related 
time-minimum routes calculated using the computer 
program written in MATLAB.  

2. GENERAL INDICATIONS 
The main elements of a typical optimal control 

problem (o.c.p) are the following: 

- state equations with initial conditions: 
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where li  are class C1 scalar functions 

- duration of the process (time of termination): 
{ }Lx  ∂∈∈ (t))(t, :Rt inf =t +

f   (4) 

- control constraints: 
mRt ⊂∈ Uu )( control vector  (5) 

The standard matrix-vector notation is used below. 
A single vector x is considered as a column-vector 
while xT designates its transposition (row). By fx we 
denote a column-vector of partial derivatives in x, 
while f is the scalar function or Jacoby’s matrix for the 
case where f is a vector function. 

2.1. Maximum Principle 
The solution of the routing problem presented below 

is based on Pontryagin’s maximum principle whose 
adequate version can be put here as follows. 

If, in the o.c.p as formulated above, u*(t) and x*(t) 
are respectively the optimal control and the 
corresponding trajectory, then there exists a nontrivial 
(non-zero) co-state trajectory p(t) such that the 
following conditions are satisfied: 

state equations  (1), 
co-state equations: 

   ),()( p,x*,u*tHt x−=p&   (6) 

with transversality conditions: 
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such that the hamiltonian function: 
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attains its maximum in u at u(t)=u*(t) i.e. the 
maximum principle holds: 
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3. OPTIMAL ROUTING PROBLEM 
FORMULATION 

Simplifying the routing problem, and assuming the 
currents field data to be a known, one can define it as 
follows. A ship whose movement is described by the 
equations below, must travel through the region of 
strong currents. The magnitude and direction of the 
currents are known as functions of position: Vcr= 

=[ϕ1(x1,x2),ϕ2(x1,x2)]T, where (x1,x2) are rectangular 
coordinates and [ϕ1,ϕ2]T are the velocity components 
of the current in the x1 and x2 directions, respectively. 
The magnitude of the ship's velocity relative to the 
water is V, a constant. The kinematical model of ship 
motion adopted here seems to be satisfactory when 
long distances are assumed. The state vector 
coordinates (x1 ,x2) represent the ship's position 
whereas the ship course ψ (denoted here by u) is 
interpreted as a control variable: 
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The objective of the ship starting from the point 
x0=(x1

o,x2
o) is to reach the target set (e.g. the 

destination point xf=(x1
f ,x2

f) in minimal time, which 
implies that the performance functional takes here the 
form: 

J u dt
T
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The effective solution of this problem in real time is 
a vital task for navigators to plan and optimise the sea 
routes in their everyday duties. 

3.1. Problem solution 
Now let us apply the conditions of sec.1 to solve the 

above formulated Zermello problem. The hamiltonian 
of the system is: 
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Co-state equations: 
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Transversality conditions: 
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Maximising the hamiltonian H at the time tf we can 
obtain λ as well as the value u*(tf)  
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The values of p(tf) coordinates are: 

)sin-cos-(V
sin=)(t p

)sin-cos-(V
cos=)(t p

21
f2

21
f1

αϕαϕ
α

αϕαϕ
α

−

−

 (17) 

Now starting from this final conditions and the 
target point xf, we can simultaneously stepwise 
integrate (backward in time) the state and co-state 
equations, maximising at each step the Hamiltonian: 
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where on the basis of co-linearity conditions 
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we obtain optimal control  
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within the whole time interval [0, tf]. 
So, we have obtained a parametrical family of 

optimal controls which imply a corresponding family 
of ship motion optimal trajectories. Having obtained 
now the starting point of the process, the parameter α 

can be found by one of many existing numerical 
procedures for solving algebraic equations of single 
variable (e.g. the method of chords ). Note that the 
described method is effective not only for any current 
field but even for cases of  the co-state equations 
depending on u, which is not considered here. In 
simple cases, however, the optimal control may be 
found fully analytically, Zwierzewicz (1990).  

Now we specify these results for the numerical data. 
At the unit of length a nautical mile (nm) is adopted, 
while the speed is measured in knots. 

3.2. Example 
Case definition data. 

1. Geometry parameters (normalised): 
 

Route origination point = (-1,-1) 
Target set   = (0,0) 
Ship’s speed V  = 1  

 
2. Current vector field  

Current vector field is defined as a vertex created by 
full clockwise rotation of vertex profile function, 
which is based on radius from vertex centre. The 
function used here is  

2rerkF −⋅⋅=    (20) 
where r is radius from vertex centre. 
Relations: 
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define a Cartesian coordinates (xr
1,xr

2) in relation to 
the vortex center. 

Based on the function F, the current field vector 
components ϕ1, ϕ2 are defined as follows: 
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The function value scale coefficient k has been set as 
1.5, while r axis scale has been compressed 6 times to 
make the vortex fit inside the {0,0}, {-1,-1} square. 
The actual vertex profile thus obtained is shown in 
Fig.1. 
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Fig 1. Vertex profile function F used for this case. 
 
3.Cost functional is as per (11) (time-minimal). 
Since Pontryagin’s maximum principle is the 

necessary (but not sufficient) condition for optimality, 
the trajectories found in this way form so-called family 
of extremals i.e. a family of solutions among which the 
candidates for optimality might in fact exist. 

The family of extremal trajectories (extremals) has 
been calculated by backward integration of the system 
composed of state (10) and co-state equations (13) 
starting from final (0,0) and transversality conditions 
(17) and using each step the control found via (19). 
The two extremals that hit the initial conditions (-1,-1) 
era illustrated in Figure 2 and 3. To select the optimal 
one, a simple comparison of related “time to go” 
corresponding to each one suffices. 
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Fig 2. Optimal trajectories (extremals) obtained for 

vertex centered in (-0.65, -0,35). 

Figure 2 – in this position of the vortex the time T1 
is obviously much shorter than T2 (the route is shorter 

and drift current is helping) so 1 is the optimal 
trajectory. The graphic function F (downscaled to fit) 
is shown in a position illustrating the clockwise 
rotation of the vertex.  
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Fig 3. Optimal trajectories (extremals) obtained for 

vertex located in (-0.35, -0,65). 
 
Figure 3 – T1 is still slightly shorter in spite of 

going along a much longer route, which is probably 
due to a relatively high drift speed. (up to 65% of 
ship’s speed), which carries the ship forward when 
passing close to the center of the vortex. 

In both cases presented above, the “downwind” 
vortex-accelerated trajectory proved to be superior, but 
it is intuitively quite obvious that at some point, with 
the vortex moved further aside and its “upwind” side 
providing the shorter path, the “upwind” trajectory is 
going to turn out as a better choice. In fact such results 
were also obtained by the authors. However, there is 
no general solution even for this simple model, as the 
locations of points having equal times both ways 
around the vortex are also dependant on the vortex 
speed profile and its relation to ship’s speed. Such 
points, when assumed to be starting points of the 
journey, form so-called dispersal line which divides 
the whole plane into two areas. The points located on 
the dispersal line have equal times along both routes 
around the vortex along their respective extremal 
trajectories, and both areas are defined by "better go 
upwind"/"better go downwind" criterion. 
Consequently, the dispersal line is never crossed by 
any optimal trajectory – those that cross it are 
extremals which have chosen a wrong way around the 
vortex. 
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4. CONCLUSIONS 
In real life the situation is much more complex as, 

for example, the upwind courses are preferred for 
better stability of the ship in rough seas. Such factors, 
however, may be accounted for by using a more 
sophisticated quality criterion, or using a field of 
external influences which would account for factors 
such as sea state - not only the drift speed value. There 
is a lot of possibilities for further research in the field 
of ship optimal weather routing, and the authors firmly 
believe that the mathematical approach to this problem 
is the most promising in the long perspective. 
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