Estimators for forest attributes on a simulated population of medium-sized tropical forest in southern Mexico

Main Article Content

Efraín Velasco Bautista
Héctor de los Santos Posadas
Hugo Ramírez Maldonado
Gilberto Rendón Sánchez
José René Valdez Lazalde
Miguel Acosta Mireles

Abstract

Throughout the data of the National Forest and Soil Inventory (INFyS) of Mexico, it is not uncommon to find clusters with less than four subplots (incomplete). The consequences of this condition on the forest parameters estimates are yet to be completely analyzed. The main objective of this work was to compare the behavior of different sampling estimators under such conditions of cluster completeness. Using an artificial population of 9,370,000 trees, created on a 10,000 ha surface, a total of 88 systematic sampling grids using four-plot circular clusters were set. Each grid had 81 clusters, separated by 1 km. On each sampling grid, three different completeness conditions were tested: a) full completeness (all clusters with four subplots) b) 88 % completeness and c) 63 % completeness. On each condition, timber volume (m3 ha-1) and tree density (tree ha-1) were estimated using the following estimators: 1) Forest Inventory and Analysis (FIA) 2) Van Deusen Estimators 3) Means of ratio and 4) Ratio of means. The estimators were evaluated using relative bias on the mean and the variance. For volume, on each of the three completeness conditions, the mean estimates were similar and unbiased using the proposed four estimators. Nevertheless, the FIA estimator produced biased variance estimates ranging from two to five times larger for 88% and 63% completeness respectively. Similar behavior was observed on tree density. The FIA estimators will produce biased results on the variance estimator when a high percentage of clusters is incomplete.

Article Details

How to Cite
Velasco Bautista, E., de los Santos Posadas, H., Ramírez Maldonado, H., Rendón Sánchez, G., Valdez Lazalde, J. R., & Acosta Mireles, M. (2020). Estimators for forest attributes on a simulated population of medium-sized tropical forest in southern Mexico. Bosque, 41(3), 307–320. https://doi.org/10.4067/S0717-92002020000300307
Section
Articles
Author Biographies

Efraín Velasco Bautista, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, Ciudad de México, México.

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales, Ciudad de México, México.

Héctor de los Santos Posadas, Colegio de Postgraduados, Postgrado en Ciencias Forestales, Montecillo, Estado de México, México.

Colegio de Postgraduados, Postgrado en Ciencias Forestales, Carretera México-Texcoco km 36.5, Montecillo, Estado de México, México, CP. 56230, tel.: 52-595-9520246.

Hugo Ramírez Maldonado, Universidad Autónoma Chapingo, División de Ciencias Forestales. Chapingo, Estado de México. México.

Universidad Autónoma Chapingo, División de Ciencias Forestales. Chapingo, Estado de México. México.

Gilberto Rendón Sánchez, Colegio de Postgraduados, Postgrado en Socioeconomía, Estadística e Informática-Estadística, Montecillo, Estado de México, México.

Colegio de Postgraduados, Postgrado en Socioeconomía, Estadística e Informática-Estadística, Montecillo, Estado de México, México.

José René Valdez Lazalde, Colegio de Postgraduados, Postgrado en Ciencias Forestales, Montecillo, Estado de México, México.

Colegio de Postgraduados, Postgrado en Ciencias Forestales, Carretera México-Texcoco km 36.5, Montecillo, Estado de México, México, CP. 56230, tel.: 52-595-9520246.

Miguel Acosta Mireles, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Valle de México, Texcoco, Estado de México, México.

Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Valle de México, Texcoco, Estado de México, México.

Most read articles by the same author(s)