Thermal behavior of calafate (Berberis buxifolia) seeds

Main Article Content

Pablo Martín-Ramos
Jesús Martín-Gil
María del Carmen Ramos-Sánchez
Salvador Hernández-Navarro
Francisco Javier Martín-Gil

Abstract

Low temperature is the most important factor limiting the distribution of plants. In this study the low temperature thermal behavior of calafate seeds was analyzed by Differential Scanning Calorimetry (DSC), and a vibrational characterization of their different components was conducted by infrared spectroscopy (FTIR). In cold-acclimated plants, such as calafate, the total percentage of polyunsaturated fatty acids in their seeds is significantly higher than that of saturated fatty acids. Successive freezing-thawing cycles lead to increased formation of linoleic (LA) and linolenic (LNA) α-crystals. This process would barely modify the phase-transition temperature of the lipid membrane but would lead to an increase in the membrane fluidity (LNA would make the cell membranes more fluid during seed development). It seems that processes in membranes rather than in the glassy cytoplasm may determine the cooling resistance.

Article Details

How to Cite
Martín-Ramos, P., Martín-Gil, J., Ramos-Sánchez, M. del C., Hernández-Navarro, S., & Martín-Gil, F. J. (2017). Thermal behavior of calafate (Berberis buxifolia) seeds. BOSQUE, 37(3), 625–630. https://doi.org/10.4067/S0717-92002016000300019
Section
Notes