Variaciones del microclima local en zonas de tejido urbano abierto en clima tropical seco
Contenido principal del artículo
Resumen
El objetivo del artículo es analizar el comportamiento del microclima local en zonas de tejido urbano abierto en clima tropical seco; el caso de estudio es la ciudad de Barranquilla, Colombia. En la investigación se formularon dos protocolos de simulación computarizada para el estudio de sombras, radiación solar y viento. En el estudio se comprobó que la relación de aspecto hw-1, la materialidad de las superficies y la arborización en zonas climáticas de tejido abierto influyen en las variaciones de los parámetros microclimáticos como radiación solar y viento. Asimismo, los resultados demuestran que, en las fachadas donde se presenta menor radiación solar los porcentajes de sombras oscilan entre 90 % a 100 %. En cuanto a ventilación natural se identificó que en las cubiertas de los edificios con una altura menor a 6 metros la velocidad del viento es favorable con variaciones entre 3,36 m/s a 6 m/s.
Detalles del artículo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Referencias
Área Metropolitana de Barranquilla. (2005). Plan de Gestión Integral de Residuos Sólidos de Barranquilla y su Área Metropolitana. Barranquilla: Área Metropolitana de Barranquilla. http://www.ambq.gov.co/wp-content/uploads/2016/10/Cap-1-DIAGNOSTICO-GENERAL.pdf
Bala, R., Prasad, R., Yadav, V. y Sharma, J. (2019). Spatial Variation of Urban Heat Island Intensity in Urban Cities Using Modis Satellite Data. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-4/W16 (October): 147-151.
Balew, A. y Korme, T. (2020). Monitoring Land Surface Temperature in Bahir Dar City and Its Surrounding Using Landsat Images. The Egyptian Journal of Remote Sensing and Space Science 23(3): 371-386.
Baruti, M., Johansson, E. y Yahia, M.-W. (2020). Urbanites’ outdoor thermal comfort in the informal urban fabric of warm humid Dar es Salaam, Tanzania. Sustainable Cities and Society, 62. doi: https://doi.org/10.1016/j.scs.2020.102380.
Cárdenas-Jirón, L. y Chang Lou, J. (2019). Acceso solar en espacio urbano: simulaciones energéticas para su mitigación en alta densidad inmobiliaria residencial. Santiago Centro Sur. Revista 180, 44 (95-109). http://dx.doi.org/10.32995/rev180.Num-44.(2019).art-630.
Choudhury, D., Das, A. y Das, M. (2021). Investigating thermal behavior pattern (TBP) of local climatic zones (LCZs): A study on industrial cities of Asansol-Durgapur development area (ADDA), eastern India. Urban Climate, 100727. doi: 10.1016/j.uclim.2020.100727.
Cilek, M. U. y Uslu, C. (2022). Modeling the relationship between the geometric characteristics of urban green spaces and thermal comfort: The case of Adana city. Sustainable Cities and Society, 103748. doi: 10.1016/j.scs.2022.103748.
Departamento Nacional de Planeación (2022). TerriData DNP. https://terridata.dnp.gov.co/index-app.html#/perfiles/08001.
Fernández, M. y Gentili, J. (2021). Radiación solar y planeamiento urbano: factores e interacciones en Bahía Blanca, Argentina. Revista de Urbanismo, (45), 46-66. doi: https://doi.org/10.5354/0717-5051.2021.58824.
Galal, O., Sailor, D. y Mahmoud, H. (2020). The impact of urban form on outdoor thermal comfort in hot arid environments during daylight hours, case study: New Aswan. Building and Environment. 184. doi: https://doi.org/10.1016/j.buildenv.2020.107222.
Hasan, M., Hassan, L., Al Mamun, A., Abualreesh, M. H., Idris, M. H. y Kamal, A. H. (2022). Urban green space mediates spatiotemporal variation in land surface temperature: a case study of an urbanized city, Bangladesh. Environmental Science and Pollution Research, 36376-36391. doi: 10.1007/s11356-021-17480-9.
He, B.J. (2019). Towards the next generation of green building for urban heat island mitigation: Zero UHI impact building. Sustain. Cities Soc. https://doi.org/10.1016/j.scs.2019.101647.
Hong, T., Xu, Y., Sun, K., Zhang, W., Luo, X. y Hooper, B. (2021). Urban microclimate and its impact on building performance: A case study of San Francisco. Urban Climate. doi: 10.1016/j.uclim.2021.100871.
International Energy Agency. (2018). World Energy Outlook. 661. https://doi.org/10.1787/weo-2018-en.
Jabik, B. B. (2022). Relevant local climatic knowledge for sustainable agro-ecological practices by small-scale farmers in northern Ghana. Climate and Development. doi: 10.1080/17565529.2022.2057403.
Javanroodi, K., Nik, V. M., y Scartezzini, J. (2021). Quantifying the impacts of urban morphology on modifying microclimate conditions in extreme weather conditions. Journal of Physics: Conference Series, 2042(1), Article 012058. https://doi.org/10.1088/1742-6596/2042/1/012058.
Lai, D., Chen, B. y Liu, K. (2019) Quantification of the influence of thermal comfort and life patterns on outdoor space activities. Build. Simul. 13, 113-125. https://doi.org/10.1007/s12273-019-0565-x.
Leconte, F., Bouyer, J., Claverie, R. y Pétrissans, M. (2015). Using local climate zone scheme for UHI assessment: Evaluation of the method using mobile measurements. Build. Environ., 83, pp. 39-49.
Lee, I., Voogt, J. y Gillespie, T. (2018). Analysis and Comparison of Shading Strategies to Increase Human Thermal Comfort in Urban -Areas. Atmosphere 9(3) 91, https://doi.org/10.3390/atmos9030091.
Li, Y., Wang, D., Li, S. y Gao, W. (2021). Impact Analysis of Urban Morphology on Residential District Heat Energy Demand and Microclimate Based on Field Measurement Data. Sustainability, 2070. doi: https://doi.org/10.3390/su13042070.
Martínez González, N. P. (2021). Evolución de las islas de calor urbanas en el período 2002-2020 y su relación con las zonas climáticas locales de las comunas de Concepción, Talcahuano y Hualpén, Región del Biobío, Chile. Chile: Universidad de Chile. https://repositorio.uchile.cl/handle/2250/180787.
Mohammad, P. y Goswami, A. (2021). Quantifying diurnal and seasonal variation of surface urban heat island intensity and its associated determinants across different climatic zones over Indian cities. GIScience & Remote Sensing, 955-981. https://doi.org/10.1080/15481603.2021.1940739.
Olgyay, V. (2015). Design with Climate: Bioclimatic Approach to Architectural Regionalism: New and Expanded Edition. Princeton University Press, 1-190.
Perera, N. y Emmanuel, R. (2018). A “Local Climate Zone” based approach to urban planning in Colombo, Sri Lanka. Urban Climate, 188-203. https://doi.org/10.1016/j.uclim.2016.11.006.
Rodríguez, L. (2017). Procedimiento para simulaciones de sombra incidente en Ecotect. Facultad de Arquitectura, Universidad de la Costa, Colombia.
Ruwaa Bahgat, R. R. y Elkady, S. (2020). Analyzing the impact of design configurations of urban features on reducing solar radiation. Journal of Building Engineering, 101664. https://doi.org/10.1016/j.jobe.2020.101664.
Shooshtarian, S., y Rajagopalan, P. (2019). Perception of Wind in Open Spaces. Climate, 7(9). doi: 10.3390/cli7090106.
Smith, G.L., Wilber, A.C., Gupta, S.K. y Stackhouse, P.W. (2002). Surface radiation budget and climate classification. Journal of Climate 15(10), 1175-1188. 10.1175/1520-0442(2002)015<1175:SRBACC>2.0.CO;2.
Stewart, I. y Oke T. (2012). Local Climate Zones for Urban Temperature Studies. Bulletin American Meteorological Society, 93(12), 1879-1900. http://dx.doi.org/10.1175/BAMS-D-11-00019.1.
Stojanovic, N., Tesic, M., Petrovic, J., Corovic, D., Vukmirovic, M., Lisica, A. y Petrovic, U. (2020). The effect of roadside green spaces on wind speed reduction in the urban environment. Fresenius Environmental Bulletin, 10465-10473.
Takebayashi, H., Okubo, M., y Danno, H. (2020). Thermal environment map in street canyon for implementing extreme high temperature measures. Atmosphere 11(6), 10.3390/ATMOS11060550.
Therán, K. y Rodríguez, L. (2018). Hábitat sostenible. Adaptación y mitigación frente al cambio climático. Hacia los territorios resilientes. Módulo Arquitectura - CUC, 21(1), 63-96. https://doi.org/10.17981/moducuc.21.1.2018.03.
Therán, K., Rodríguez, L., Mouthon, S. y Manjarres, J. (2019). Microclima y Confort Térmico Urbano, Módulo Arquitectura – CUC, vol. 23, N° 1, pp. 49-88, 2019. http://doi.org/10.17981/mod.arq.cuc.23.1.2019.04.
Therán-Nieto, K., Pérez-Arévalo, R., Marín-Carranza, J. y Caballero-Calvo, A. (2023). Thermal Comfort and Microclimate in Indoor Spaces of Low-rise Residential Buildings in Dry Tropical Climate. Journal of Design and Built Environment. https://doi.org/10.22452/jdbe.vol23no2.4.
Villadiego, K. (2014). Une lecture de la forme urbaine et des microclimats. Le cas de Barranquilla. Marseille, France. Aix Marseille Universite; Institut d’Urbanisme et d’Aménagement Régional – IUAR; Laboratoire Interdisciplinaire en Urbanisme – LIEU.
Widiastut, R., Zaini, J. y Caesarendra, W. (2020). Field measurement on the model of green facade systems and its effect to building indoor thermal comfort. Measurement. https://doi.org/10.1016/j.measurement.2020.108212.
Wang, J.-W., Yang, H.-J., y Kim, J.-J. (2020). Wind speed estimation in urban areas based on the relationships between background wind speeds and morphological parameters. Journal of Wind Engineering & Industrial Aerodynamics, 205. https://doi.org/10.1016/j.jweia.2020.104324.
Ziaul, S. y Pal, S. (2018). Analyzing control of respiratory particulate matter on Land Surface Temperature in local climatic zones of English Bazar Municipality and Surroundings. Urban Climate, 34-50. doi: 10.1016/j.uclim.2018.01.006.
https://orcid.org/0000-0002-1357-6880