Quantifying the Microclimatic Benefits of Pocket Parks in the City of Mendoza, Argentina
Main Article Content
Abstract
The purpose of this work is to determine the potential of pocket parks or small green spaces to improve the thermal conditions of their immediate surroundings during the summer, as well as to assess their inner comfort conditions. The methodology consisted in working with two case studies located within the city of Mendoza’s residential area. Fixed temperature and humidity stations were set up, as well as mobile units that recorded air temperature, relative humidity, solar radiation, wind speed, and other climatic variables. The points monitored were located inside and outside the two pocket parks selected for the study. Sky vision factor (SVF) values were also established with the RayMan program, and the thermal comfort was calculated with the COMFA method. The outcomes reveal that pocket parks can lower maximum daytime air temperatures between 5.6 ºC and 6.1 ºC. In terms of thermal comfort, people are in a comfortable condition in places where trees predominate. Pocket parks have positive effects in terms of reducing air temperatures and improving thermal comfort, especially due to the presence of increased vegetation cover and prevailing forestation.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Armato, F. (2017). Pocket Park: Product Urban design. The Design Journal, 20(sup1), S1869–S1878. https://doi.org/10.1080/14606925.2017.1352705.
Bórmida, E. (1984). Mendoza, una ciudad oasis. Facultad de Diseño, Arquitectura y Urbanismo. Revista de la Universidad de Mendoza, , 121-137.
Bochaca, F. (2005). El verde en la estructura urbana de Mendoza. ARQ (Santiago), 60, 68-71.
Brown, R., y Gillespie, T. (1995). Microclimatic landscape design: Creating thermal comfort and energy efficiency. John Wiley and Sons.
Button, K. (2002). City management and urban environmental indicators. Ecological Economics, 40(2), 217-233. https://doi.org/10.1016/S0921-8009(01)00255-5.
Castaldo, V. L., Pisello, A. L., Piselli, C., Fabiani, C., Cotana, F., & Santamouris, M. (2018). How outdoor microclimate mitigation affects building thermal-energy performance: A new design-stage method for energy saving in residential near-zero energy settlements in Italy. Renewable Energy, 127, 920-935. https://doi.org/10.1016/j.renene.2018.04.090.
Carrieri, S. A., Codina, R. A., Manzano, E., Videla, E., Vespa, M. J., Kocsis, C. A., Ferro Malecki, M., y Fioretti, S. (2008). Propuesta de metodología para la calificación bio-ambiental de espacios verdes mediante coeficientes ecofisiológicos. Revista de la Facultad de Ciencias Agrarias, 41(1), 1-21.
Cheng, S., Zhang, D., Wang, Y., y Zhang, X. (2024). Exploring the Relationships between Mini Urban Green Space Layout and Human Activity. Land, 13(6), 871. https://doi.org/10.3390/land13060871.
Cohen, D. A., Marsh, T., Williamson, S., Han, B., Derose, K. P., Golinelli, D., y McKenzie, T. L. (2014). The potential for pocket parks to increase physical activity. American Journal of Health Promotion, 28(3_suppl), S19-S26. https://doi.org/10.4278/ajhp.130430-quan-213.
Correa, E. N., Pattini, A., Córica, M. L., Fornés, M., y Lesino, G. (2005). Evaluación del Factor de Visión de Cielo a partir del procesamiento digital de imágenes hemiesféricas: Influencia de la configuración del cañón urbano en la disponibilidad del recurso solar. Avances en Energías Renovables y Medio Ambiente, 9, 43-48.
Correa, E., De Rosa, C., y Lesino, G. (2006). Isla de calor urbana: Distribución espaciotemporal de temperaturas dentro del área metropolitana de Mendoza. Avances en Energías Renovables y Medio Ambiente, 10. Impreso en Argentina. ISSN 0329-5184.
Forman, R. T. (2008). Urban regions: Ecology and planning beyond the city. Cambridge University Press.
Grimmond, C. S. B., Roth, M., Oke, T. R., Au, Y. C., Best, M., Betts, R., Carmichael, G., Cleugh, H., Dabberdt, W., Emmanuel, R., et al. (2010). Climate and more sustainable cities: Climate information for improved planning and management of cities (producers/capabilities perspective). Procedia Environmental Science, 1, 247–274.
Heiland, E. G., Welmer, A. K., Wang, R., Santoni, G., Fratiglioni, L., y Qiu, C. (2019). Cardiovascular risk factors and the risk of disability in older adults: Variation by age and functional status. Journal of the American Medical Directors Association, 20(2), 208-212.
Kerishnan, P. B., Maruthaveeran, S., y Maulan, S. (2020). Investigating the usability pattern and constraints of pocket parks in Kuala Lumpur, Malaysia. Urban Forestry & Urban Greening, 50, 126647. https://doi.org/10.1016/j.ufug.2020.126647.
Kerishnan, P. B., y Maruthaveeran, S. (2021). Factors contributing to the usage of pocket parks: A review of the evidence. Urban Forestry & Urban Greening, 58, 126985. https://doi.org/10.1016/j.ufug.2021.126985.
Kim, J.-H., Gu, D., Sohn, W., Kil, S.-H., Kim, H., y Lee, D.-K. (2016). Neighborhood landscape spatial patterns and land surface temperature: An empirical study on single-family residential areas in Austin, Texas. International Journal of Environmental Research and Public Health, 13(880). https://doi.org/10.3390/ijerph13090880.
Martínez, S. L. E., y Ramírez, D. F. A. (2020). Parques de bolsillo: Un análisis desde la percepción de usuarios en la ciudad de México. Economía, Sociedad y Territorio, 20(63), 489-511.
Matzarakis, A., Rutz, F., y Mayer, H. (2010). Modelling radiation fluxes in simple and complex environments: Basics of the RayMan model. International Journal of Biometeorology, 54, 131-139.
Motazedian, A., Coutts, A. M., y Tapper, N. J. (2020). The microclimatic interaction of a small urban park in central Melbourne with its surrounding urban environment during heat events. Urban Forestry y Urban Greening, 52,126688. https://doi.org/10.1016/j.ufug.2020.126688.
Municipalidad de la ciudad de Mendoza, Dirección de planificación urbanística. Zonificación de usos del suelo. http://www.ciudaddemendoza.gov.ar/.
Naghibi, M., Faizi, M., y Ekhlassi, A. (2021). Design possibilities of leftover spaces as a pocket park in relation to planting enclosure. Urban Forestry y Urban Greening, 64, 127273. https://doi.org/10.1016/j.ufug.2021.127273.
Nordh, H., Hartig, T., Hagerhall, C. M., y Fry, G. (2009). Components of small urban parks that predict the possibility for restoration. Urban Forestry y Urban Greening, 8(4), 225-235. https://doi.org/10.1016/j.ufug.2009.06.003.
Nordh, H., y Østby, K. (2013). Pocket parks for people – A study of park design and use. Urban Forestry & Urban Greening, 12(1), 12-17. https://doi.org/10.1016/j.ufug.2012.11.003.
Oke, T. R. (1992). Boundary Layer Climates (2nd ed.). Routledge.
Oke, T. (2004). Initial guidance to obtain representative meteorological observations at urban sites. IOM Report 2004, World Meteorological Organization, Geneva.
Organización Mundial de la Salud. (2017). Banco Mundial y OMS: La mitad del mundo carece de acceso a servicios de salud esenciales y los gastos en salud abocan aún hoy a la pobreza extrema a 100 millones de personas. https://www.who.int/es/news/item/13-12-2017-world-bank-and-who-half-the-world-lacks-access-to-essential-healthservices-100-million-still-pushed-into-extreme-poverty-because-of-health-expenses.
Park, J., Kim, J.-H., Lee, D. K., Park, C. Y., y Jeong, S. G. (2017). The influence of small green space type and structure at the street level on urban heat island mitigation. Urban Forestry y Urban Greening, 21, 203-212. https://doi.org/10.1016/j.ufug.2016.12.005.
Peschardt, K. K., Schipperijn, J., y Stigsdotter, U. K. (2012). Use of small public urban green spaces (SPUGS). Urban Forestry & Urban Greening, 11(3), 235-244. https://doi.org/10.1016/j.ufug.2012.04.002.
Portillo, G. (2024). Isla de calor: qué es, causas, consecuencias y soluciones. Ecologíaverde. https://www.ecologiaverde.com/isla-de-calor-que-es-causas-consecuencias-y-soluciones-4442.html.
Rosso, F., Pioppi, B., y Pisello, A. L. (2021). Pocket parks for human-centered urban climate change resilience: Microclimate field tests and multi-domain comfort analysis through portable sensing techniques and citizens’ science. Energy y Buildings, 260, 111918.
Ruiz, M. A., y Correa, E. N. (2015). Suitability of different comfort indices for the prediction of thermal conditions in forested open spaces in arid zone cities. Theoretical and Applied Climatology, 122(1), 69-83. https://doi.org/10.1007/s00704-014-1279-8.
Ruiz, M. A., Colli, M. F., Martinez, C. F., y Correa-Cantaloube, E. N. (2022). Park cool island and built environment: A ten-year evaluation in Parque Central, Mendoza-Argentina. Sustainable Cities and Society, 79, 103681. https://doi.org/10.1016/j.scs.2022.103681.
Stocco, S., Cantón, M. A., y Correa, E. N. (2017). Espacios verdes en ciudades de zona árida: diagnóstico de la situación actual de plazas de la ciudad de Mendoza, Argentina. Cuaderno Urbano Espacio/Cultura/Sociedad, 23. https://doi.org/10.30972/crn.23232689.
Stocco, S., Cantón, M. A., y Correa, E. N. (2018). Incidencia de las plazas urbanas sobre el comportamiento térmico del entorno en alta densidad edilicia: El caso de la ciudad de Mendoza, Argentina. Universidad del Bío-Bío, Urbano, 21(37), 94-106.
Thacker, S., Adshead, D., Fantini, C., Palmer, R., Ghosal, R., Adeoti, T., Morgan, G., y Stratton-Short, S. (2021). Infraestructura para la acción por el clima. UNOPS, Copenhague (Dinamarca). https://bit.ly/3mJV7eN.
Zhang, B., Xie, G., Gao, J., y Yang, Y. (2014). The cooling effect of urban green spaces as a contribution to energysaving and emission-reduction: A case study in Beijing, China. Building and Environment, 76, 37–43. https://doi.org/10.1016/j.buildenv.2014.03.00.